Stability of depth and Stanley depth of symbolic powers of squarefree monomial ideals
HTML articles powered by AMS MathViewer
- by S. A. Seyed Fakhari
- Proc. Amer. Math. Soc. 148 (2020), 1849-1862
- DOI: https://doi.org/10.1090/proc/14864
- Published electronically: December 30, 2019
- PDF | Request permission
Abstract:
Let $\mathbb {K}$ be a field and let $S=\mathbb {K}[x_1,\dots ,x_n]$ be the polynomial ring in $n$ variables over $\mathbb {K}$. Assume that $I\subset S$ is a squarefree monomial ideal. For every integer $k\geq 1$, we denote the $k$-th symbolic power of $I$ by $I^{(k)}$. Recently, Montaño and Núñez-Betancourt (2018), and independently Nguyen and Trung (to appear), proved that for every pair of integers $k, i\geq 1$, \begin{equation*} \mathrm {depth}(S/I^{(k)})\leq \mathrm {depth}(S/I^{(\lceil \frac {k}{i}\rceil )}). \end{equation*} We provide an alternative proof for this inequality. Moreover, we re-prove the known results that the sequence $\{\mathrm {depth}(S/I^{(k)})\}_{k=1}^{\infty }$ is convergent and \begin{equation*} \min _k\mathrm {depth}(S/I^{(k)})=\lim _{k\rightarrow \infty }\mathrm {depth}(S/I^{(k)})=n-\ell _s(I), \end{equation*} where $\ell _s(I)$ denotes the symbolic analytic spread of $I$. We also determine an upper bound for the index of depth stability of symbolic powers of $I$. Next, we consider the Stanley depth of symbolic powers and prove that the sequences $\{\mathrm {sdepth}(S/I^{(k)})\}_{k=1}^{\infty }$ and $\{\mathrm {sdepth}(I^{(k)})\}_{k=1}^{\infty }$ are convergent and the limit of each sequence is equal to its minimum. Furthermore, we determine an upper bound for the indices of sdepth stability of symbolic powers.References
- Somayeh Bandari and Ali Soleyman Jahan, The cleanness of (symbolic) powers of Stanley-Reisner ideals, Czechoslovak Math. J. 67(142) (2017), no. 3, 767–778. MR 3697915, DOI 10.21136/CMJ.2017.0173-16
- M. Brodmann, The asymptotic nature of the analytic spread, Math. Proc. Cambridge Philos. Soc. 86 (1979), no. 1, 35–39. MR 530808, DOI 10.1017/S030500410000061X
- Lindsay Burch, Codimension and analytic spread, Proc. Cambridge Philos. Soc. 72 (1972), 369–373. MR 304377, DOI 10.1017/s0305004100047198
- Art M. Duval, Bennet Goeckner, Caroline J. Klivans, and Jeremy L. Martin, A non-partitionable Cohen-Macaulay simplicial complex, Adv. Math. 299 (2016), 381–395. MR 3519473, DOI 10.1016/j.aim.2016.05.011
- Jürgen Herzog, A survey on Stanley depth, Monomial ideals, computations and applications, Lecture Notes in Math., vol. 2083, Springer, Heidelberg, 2013, pp. 3–45. MR 3184118, DOI 10.1007/978-3-642-38742-5_{1}
- Jürgen Herzog and Takayuki Hibi, Monomial ideals, Graduate Texts in Mathematics, vol. 260, Springer-Verlag London, Ltd., London, 2011. MR 2724673, DOI 10.1007/978-0-85729-106-6
- Jürgen Herzog and Takayuki Hibi, The depth of powers of an ideal, J. Algebra 291 (2005), no. 2, 534–550. MR 2163482, DOI 10.1016/j.jalgebra.2005.04.007
- Jürgen Herzog, Takayuki Hibi, and Ngô Viêt Trung, Symbolic powers of monomial ideals and vertex cover algebras, Adv. Math. 210 (2007), no. 1, 304–322. MR 2298826, DOI 10.1016/j.aim.2006.06.007
- Jürgen Herzog and Ayesha Asloob Qureshi, Persistence and stability properties of powers of ideals, J. Pure Appl. Algebra 219 (2015), no. 3, 530–542. MR 3279372, DOI 10.1016/j.jpaa.2014.05.011
- Jürgen Herzog, Marius Vladoiu, and Xinxian Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra 322 (2009), no. 9, 3151–3169. MR 2567414, DOI 10.1016/j.jalgebra.2008.01.006
- Le Tuan Hoa, Kyouko Kimura, Naoki Terai, and Tran Nam Trung, Stability of depths of symbolic powers of Stanley-Reisner ideals, J. Algebra 473 (2017), 307–323. MR 3591152, DOI 10.1016/j.jalgebra.2016.10.036
- Lê Tuân Hoa and Trân Nam Trung, Partial Castelnuovo-Mumford regularities of sums and intersections of powers of monomial ideals, Math. Proc. Cambridge Philos. Soc. 149 (2010), no. 2, 229–246. MR 2670214, DOI 10.1017/S0305004110000071
- Craig Huneke and Irena Swanson, Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note Series, vol. 336, Cambridge University Press, Cambridge, 2006. MR 2266432
- L. Katthän and S. A. Seyed Fakhari, Two lower bounds for the Stanley depth of monomial ideals, Math. Nachr. 288 (2015), no. 11-12, 1360–1370. MR 3377121, DOI 10.1002/mana.201400269
- J. Montaño and L. Núñez-Betancourt, Splittings and symbolic powers of square-free monomial ideals, preprint 2018.
- Uwe Nagel and Tim Römer, Glicci simplicial complexes, J. Pure Appl. Algebra 212 (2008), no. 10, 2250–2258. MR 2426505, DOI 10.1016/j.jpaa.2008.03.005
- H. D. Nguyen and N. V. Trung, Depth functions of symbolic powers of homogeneous ideals, Invent. Math (to appear).
- Dorin Popescu, Bounds of Stanley depth, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 19 (2011), no. 2, 187–194. MR 2794292
- M. R. Pournaki, S. A. Seyed Fakhari, M. Tousi, and S. Yassemi, What is $\dots$ Stanley depth?, Notices Amer. Math. Soc. 56 (2009), no. 9, 1106–1108. MR 2568497
- S. A. Seyed Fakhari, Stanley depth and symbolic powers of monomial ideals, Math. Scand. 120 (2017), no. 1, 5–16. MR 3624003, DOI 10.7146/math.scand.a-25501
- S. A. Seyed Fakhari, On the Stanley depth of powers of monomial ideals, Mathematics 7 (2019), no. 607.
- Richard P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math. 68 (1982), no. 2, 175–193. MR 666158, DOI 10.1007/BF01394054
- Yukihide Takayama, Combinatorial characterizations of generalized Cohen-Macaulay monomial ideals, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 48(96) (2005), no. 3, 327–344. MR 2165349
- Naoki Terai and Ngo Viet Trung, Cohen-Macaulayness of large powers of Stanley-Reisner ideals, Adv. Math. 229 (2012), no. 2, 711–730. MR 2855076, DOI 10.1016/j.aim.2011.10.004
- Tran Nam Trung, Stability of depths of powers of edge ideals, J. Algebra 452 (2016), 157–187. MR 3461061, DOI 10.1016/j.jalgebra.2016.01.009
- Matteo Varbaro, Symbolic powers and matroids, Proc. Amer. Math. Soc. 139 (2011), no. 7, 2357–2366. MR 2784800, DOI 10.1090/S0002-9939-2010-10685-8
Bibliographic Information
- S. A. Seyed Fakhari
- Affiliation: School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran; and Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
- MR Author ID: 881160
- Email: aminfakhari@ut.ac.ir
- Received by editor(s): December 30, 2018
- Received by editor(s) in revised form: August 31, 2019
- Published electronically: December 30, 2019
- Additional Notes: This research was partially funded by the Simons Foundation Grant Targeted for Institute of Mathematics, Vietnam Academy of Science and Technology.
- Communicated by: Claudia Polini
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 1849-1862
- MSC (2010): Primary 13C15, 05E99; Secondary 13C13
- DOI: https://doi.org/10.1090/proc/14864
- MathSciNet review: 4078072