Many cusped hyperbolic 3-manifolds do not bound geometrically
HTML articles powered by AMS MathViewer
- by Alexander Kolpakov, Alan W. Reid and Stefano Riolo
- Proc. Amer. Math. Soc. 148 (2020), 2233-2243
- DOI: https://doi.org/10.1090/proc/14573
- Published electronically: January 28, 2020
Abstract:
In this note we show that there exist cusped hyperbolic $3$-manifolds that embed geodesically but cannot bound geometrically. Thus, being a geometric boundary is a non-trivial property for such manifolds. Our result complements the work by Long and Reid on geometric boundaries of compact hyperbolic $4$-manifolds and by Kolpakov, Reid, and Slavich on embedding arithmetic hyperbolic manifolds.References
- B. A. Burton, R. Budney, W. Pettersson et al., Regina: Software for low-dimensional topology, http://regina-normal.github.io/.
- Patrick J. Callahan, Martin V. Hildebrand, and Jeffrey R. Weeks, A census of cusped hyperbolic $3$-manifolds, Math. Comp. 68 (1999), no. 225, 321–332. With microfiche supplement. MR 1620219, DOI 10.1090/S0025-5718-99-01036-4
- Chun Cao and G. Robert Meyerhoff, The orientable cusped hyperbolic $3$-manifolds of minimum volume, Invent. Math. 146 (2001), no. 3, 451–478. MR 1869847, DOI 10.1007/s002220100167
- M. Chu, Special subgroups of Bianchi groups, Groups, Geometry and Dynamics (to appear), arXiv:1709.10503, 2017.
- M. Culler, M. Dunfield, M. Goerner, and J. R. Weeks, SnapPy, a computer program for studying the geometry and topology of 3-manifolds, http://snappy.computop.org.
- J. Elstrodt, F. Grunewald, and J. Mennicke, Groups acting on hyperbolic space, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. Harmonic analysis and number theory. MR 1483315, DOI 10.1007/978-3-662-03626-6
- Brent Everitt, John G. Ratcliffe, and Steven T. Tschantz, Right-angled Coxeter polytopes, hyperbolic six-manifolds, and a problem of Siegel, Math. Ann. 354 (2012), no. 3, 871–905. MR 2983072, DOI 10.1007/s00208-011-0744-2
- Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012. MR 2850125
- Evgeny Fominykh, Stavros Garoufalidis, Matthias Goerner, Vladimir Tarkaev, and Andrei Vesnin, A census of tetrahedral hyperbolic manifolds, Exp. Math. 25 (2016), no. 4, 466–481. MR 3499710, DOI 10.1080/10586458.2015.1114436
- M. Gromov and I. Piatetski-Shapiro, Nonarithmetic groups in Lobachevsky spaces, Inst. Hautes Études Sci. Publ. Math. 66 (1988), 93–103. MR 932135
- Jim Hoste and Patrick D. Shanahan, Trace fields of twist knots, J. Knot Theory Ramifications 10 (2001), no. 4, 625–639. MR 1831680, DOI 10.1142/S0218216501001049
- D. G. James and C. Maclachlan, Fuchsian subgroups of Bianchi groups, Trans. Amer. Math. Soc. 348 (1996), no. 5, 1989–2002. MR 1348863, DOI 10.1090/S0002-9947-96-01606-6
- R. Kellerhals, On minimal covolume hyperbolic lattices, Mathematics 5 (2017), article no. 43.
- Alexander Kolpakov, Bruno Martelli, and Steven Tschantz, Some hyperbolic three-manifolds that bound geometrically, Proc. Amer. Math. Soc. 143 (2015), no. 9, 4103–4111. MR 3359598, DOI 10.1090/proc/12520
- Alexander Kolpakov, Alan W. Reid, and Leone Slavich, Embedding arithmetic hyperbolic manifolds, Math. Res. Lett. 25 (2018), no. 4, 1305–1328. MR 3882165, DOI 10.4310/MRL.2018.v25.n4.a12
- A. Kolpakov and S. Riolo, Counting cusped hyperbolic three-manifolds that bound geometrically, arXiv:1808.05681, 2018.
- Alexander Kolpakov and Leone Slavich, Symmetries of hyperbolic 4-manifolds, Int. Math. Res. Not. IMRN 9 (2016), 2677–2716. MR 3519127, DOI 10.1093/imrn/rnv210
- D. D. Long and A. W. Reid, On the geometric boundaries of hyperbolic $4$-manifolds, Geom. Topol. 4 (2000), 171–178. MR 1769269, DOI 10.2140/gt.2000.4.171
- D. D. Long and A. W. Reid, Constructing hyperbolic manifolds which bound geometrically, Math. Res. Lett. 8 (2001), no. 4, 443–455. MR 1849261, DOI 10.4310/MRL.2001.v8.n4.a5
- J. Ma and F. Zheng, Geometrically bounding 3-manifold, volume and Betti number, arXiv:1704.02889, 2017.
- Colin Maclachlan and Alan W. Reid, The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Mathematics, vol. 219, Springer-Verlag, New York, 2003. MR 1937957, DOI 10.1007/978-1-4757-6720-9
- B. Martelli, Hyperbolic three-manifolds that embed geodesically, arXiv:1510.06325, 2015.
- Bruno Martelli, Matteo Novaga, Alessandra Pluda, and Stefano Riolo, Spines of minimal length, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 17 (2017), no. 3, 1067–1090. MR 3726835
- G. Robert Meyerhoff, THE CHERN-SIMONS INVARIANT FOR HYPERBOLIC 3-MANIFOLDS, ProQuest LLC, Ann Arbor, MI, 1981. Thesis (Ph.D.)–Princeton University. MR 2631318
- Yosuke Miyamoto, Volumes of hyperbolic manifolds with geodesic boundary, Topology 33 (1994), no. 4, 613–629. MR 1293303, DOI 10.1016/0040-9383(94)90001-9
- Barbara E. Nimershiem, Isometry classes of flat $2$-tori appearing as cusps of hyperbolic $3$-manifolds are dense in the moduli space of the torus, Low-dimensional topology (Knoxville, TN, 1992) Conf. Proc. Lecture Notes Geom. Topology, III, Int. Press, Cambridge, MA, 1994, pp. 133–142. MR 1316178
- John G. Ratcliffe and Steven T. Tschantz, The volume spectrum of hyperbolic 4-manifolds, Experiment. Math. 9 (2000), no. 1, 101–125. MR 1758804, DOI 10.1080/10586458.2000.10504640
- Leone Slavich, A geometrically bounding hyperbolic link complement, Algebr. Geom. Topol. 15 (2015), no. 2, 1175–1197. MR 3342689, DOI 10.2140/agt.2015.15.1175
- Leone Slavich, The complement of the figure-eight knot geometrically bounds, Proc. Amer. Math. Soc. 145 (2017), no. 3, 1275–1285. MR 3589325, DOI 10.1090/proc/13272
- Norbert J. Wielenberg, Polyhedral orbifold groups, Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 112, Cambridge Univ. Press, Cambridge, 1986, pp. 313–321. MR 903874
- Joseph A. Wolf, Spaces of constant curvature, 6th ed., AMS Chelsea Publishing, Providence, RI, 2011. MR 2742530, DOI 10.1090/chel/372
- B. Zimmermann, On the Hantzsche-Wendt manifold, Monatsh. Math. 110 (1990), no. 3-4, 321–327. MR 1084321, DOI 10.1007/BF01301685
Bibliographic Information
- Alexander Kolpakov
- Affiliation: Institut de mathématiques, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
- MR Author ID: 774696
- Email: kolpakov.alexander@gmail.com
- Alan W. Reid
- Affiliation: Department of Mathematics, Rice University, 6100 Main Street, Houston, Texas 77005
- MR Author ID: 146355
- Email: alan.reid@rice.edu
- Stefano Riolo
- Affiliation: Institut de mathématiques, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
- MR Author ID: 1238464
- Email: stefano.riolo@unine.ch
- Received by editor(s): November 11, 2018
- Received by editor(s) in revised form: November 12, 2018, and January 31, 2019
- Published electronically: January 28, 2020
- Additional Notes: The authors were supported by the Swiss National Science Foundation project no. PP00P2-170560 (first and third authors) and N.S.F. grant DMS-$1812397$ (second author)
- Communicated by: David Futer
- © Copyright 2020 Alexander Kolpakov, Alan W. Reid, and Stefano Riolo. We allow the use and reproduction of the whole or any part of this article in the public domain.
- Journal: Proc. Amer. Math. Soc. 148 (2020), 2233-2243
- MSC (2010): Primary 57R90, 57M50, 20F55, 37F20
- DOI: https://doi.org/10.1090/proc/14573
- MathSciNet review: 4078106