Complex symmetry and cyclicity of composition operators on $H^2(\mathbb {C}_+)$
HTML articles powered by AMS MathViewer
- by S. Waleed Noor and Osmar R. Severiano
- Proc. Amer. Math. Soc. 148 (2020), 2469-2476
- DOI: https://doi.org/10.1090/proc/14918
- Published electronically: January 29, 2020
- PDF | Request permission
Abstract:
In this article, we completely characterize the complex symmetry, cyclicity, and hypercyclicity of composition operators $C_\phi f=f\circ \phi$ induced by affine self-maps $\phi$ of the right half-plane $\mathbb {C}_+$ on the Hardy-Hilbert space $H^2(\mathbb {C}_+)$. The interplay between complex symmetry and cyclicity plays a key role in the analysis. We also provide new proofs for the normal, self-adjoint, and unitary cases and for an adjoint formula discovered by Gallardo-Gutiérrez and Montes-Rodríguez.References
- Frédéric Bayart and Étienne Matheron, Dynamics of linear operators, Cambridge Tracts in Mathematics, vol. 179, Cambridge University Press, Cambridge, 2009. MR 2533318, DOI 10.1017/CBO9780511581113
- Paul S. Bourdon and Joel H. Shapiro, Cyclic phenomena for composition operators, Mem. Amer. Math. Soc. 125 (1997), no. 596, x+105. MR 1396955, DOI 10.1090/memo/0596
- Sam Elliott and Michael T. Jury, Composition operators on Hardy spaces of a half-plane, Bull. Lond. Math. Soc. 44 (2012), no. 3, 489–495. MR 2966995, DOI 10.1112/blms/bdr110
- Eva A. Gallardo-Gutiérrez and Alfonso Montes-Rodríguez, Adjoints of linear fractional composition operators on the Dirichlet space, Math. Ann. 327 (2003), no. 1, 117–134. MR 2005124, DOI 10.1007/s00208-003-0442-9
- Eva A. Gallardo-Gutiérrez and Alfonso Montes-Rodríguez, The role of the spectrum in the cyclic behavior of composition operators, Mem. Amer. Math. Soc. 167 (2004), no. 791, x+81. MR 2023381, DOI 10.1090/memo/0791
- Stephan Ramon Garcia and Christopher Hammond, Which weighted composition operators are complex symmetric?, Concrete operators, spectral theory, operators in harmonic analysis and approximation, Oper. Theory Adv. Appl., vol. 236, Birkhäuser/Springer, Basel, 2014, pp. 171–179. MR 3203059, DOI 10.1007/978-3-0348-0648-0_{1}0
- Stephan Ramon Garcia and Mihai Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), no. 3, 1285–1315. MR 2187654, DOI 10.1090/S0002-9947-05-03742-6
- Stephan Ramon Garcia and Mihai Putinar, Complex symmetric operators and applications. II, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3913–3931. MR 2302518, DOI 10.1090/S0002-9947-07-04213-4
- Stephan Ramon Garcia and Warren R. Wogen, Complex symmetric partial isometries, J. Funct. Anal. 257 (2009), no. 4, 1251–1260. MR 2535469, DOI 10.1016/j.jfa.2009.04.005
- Stephan Ramon Garcia and Warren R. Wogen, Some new classes of complex symmetric operators, Trans. Amer. Math. Soc. 362 (2010), no. 11, 6065–6077. MR 2661508, DOI 10.1090/S0002-9947-2010-05068-8
- John B. Garnett, Bounded analytic functions, 1st ed., Graduate Texts in Mathematics, vol. 236, Springer, New York, 2007. MR 2261424
- Karl-G. Grosse-Erdmann and Alfredo Peris Manguillot, Linear chaos, Universitext, Springer, London, 2011. MR 2919812, DOI 10.1007/978-1-4471-2170-1
- Valentin Matache, Composition operators on Hardy spaces of a half-plane, Proc. Amer. Math. Soc. 127 (1999), no. 5, 1483–1491. MR 1625773, DOI 10.1090/S0002-9939-99-05060-1
- Valentin Matache, Weighted composition operators on $H^2$ and applications, Complex Anal. Oper. Theory 2 (2008), no. 1, 169–197. MR 2390678, DOI 10.1007/s11785-007-0025-y
- Valentin Matache, Invertible and normal composition operators on the Hilbert Hardy space of a half-plane, Concr. Oper. 3 (2016), no. 1, 77–84. MR 3505680, DOI 10.1515/conop-2016-0009
- Sivaram K. Narayan, Daniel Sievewright, and Derek Thompson, Complex symmetric composition operators on $H^2$, J. Math. Anal. Appl. 443 (2016), no. 1, 625–630. MR 3508506, DOI 10.1016/j.jmaa.2016.05.046
- Tami Worner, Commutants of certain composition operators, Acta Sci. Math. (Szeged) 68 (2002), no. 1-2, 413–432. MR 1916588
Bibliographic Information
- S. Waleed Noor
- Affiliation: IMECC, Universidade Estadual de Campinas, Campinas-SP, Brazil
- MR Author ID: 987466
- Email: waleed@ime.unicamp.br
- Osmar R. Severiano
- Affiliation: IMECC, Universidade Estadual de Campinas, Campinas-SP, Brazil
- Email: osmar.rrseveriano@gmail.com
- Received by editor(s): August 29, 2019
- Received by editor(s) in revised form: October 10, 2019
- Published electronically: January 29, 2020
- Additional Notes: The first author was partially supported by an FAPESP grant (17/09333-3).
- Communicated by: Stephan Ramon Garcia
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 2469-2476
- MSC (2010): Primary 47B33, 47A16, 47B32
- DOI: https://doi.org/10.1090/proc/14918
- MathSciNet review: 4080889