Refined scales of decaying rates of operator semigroups on Hilbert spaces: Typical behavior
HTML articles powered by AMS MathViewer
- by Moacir Aloisio, Silas L. Carvalho and César R. de Oliveira
- Proc. Amer. Math. Soc. 148 (2020), 2509-2523
- DOI: https://doi.org/10.1090/proc/14926
- Published electronically: February 18, 2020
- PDF | Request permission
Abstract:
We study relations between the decaying rates of operator semigroups on Hilbert spaces and some spectral properties of their respective generators; in particular, we show that the decaying rates of orbits of semigroups which are stable but not exponentially stable, typically in Baire’s sense, depend on sequences of time going to infinity.References
- Nalini Anantharaman and Matthieu Léautaud, Sharp polynomial decay rates for the damped wave equation on the torus, Anal. PDE 7 (2014), no. 1, 159–214. With an appendix by Stéphane Nonnenmacher. MR 3219503, DOI 10.2140/apde.2014.7.159
- W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306 (1988), no. 2, 837–852. MR 933321, DOI 10.1090/S0002-9947-1988-0933321-3
- Charles J. K. Batty, Ralph Chill, and Yuri Tomilov, Fine scales of decay of operator semigroups, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 4, 853–929. MR 3474459, DOI 10.4171/JEMS/605
- Charles J. K. Batty and Thomas Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ. 8 (2008), no. 4, 765–780. MR 2460938, DOI 10.1007/s00028-008-0424-1
- Yu. M. Berezanskiĭ, The projection spectral theorem, Uspekhi Mat. Nauk 39 (1984), no. 4(238), 3–52 (Russian). MR 753770
- Alexander Borichev and Yuri Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann. 347 (2010), no. 2, 455–478. MR 2606945, DOI 10.1007/s00208-009-0439-0
- Nicolas Burq, Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel, Acta Math. 180 (1998), no. 1, 1–29 (French). MR 1618254, DOI 10.1007/BF02392877
- Monica Conti, Valeria Danese, Claudio Giorgi, and Vittorino Pata, A model of viscoelasticity with time-dependent memory kernels, Amer. J. Math. 140 (2018), no. 2, 349–389. MR 3783212, DOI 10.1353/ajm.2018.0008
- César R. de Oliveira, Intermediate spectral theory and quantum dynamics, Progress in Mathematical Physics, vol. 54, Birkhäuser Verlag, Basel, 2009. MR 2723496, DOI 10.1007/978-3-7643-8795-2
- I. Herbst, The spectrum of Hilbert space semigroups, J. Operator Theory 10 (1983), no. 1, 87–94. MR 715559
- James S. Howland, On a theorem of Gearhart, Integral Equations Operator Theory 7 (1984), no. 1, 138–142. MR 802373, DOI 10.1007/BF01204917
- J. Korevaar, On Newman’s quick way to the prime number theorem, Math. Intelligencer 4 (1982), no. 3, 108–115. MR 684025, DOI 10.1007/BF03024240
- Yu. I. Lyubich and Vũ Quốc Phóng, Asymptotic stability of linear differential equations in Banach spaces, Studia Math. 88 (1988), no. 1, 37–42. MR 932004, DOI 10.4064/sm-88-1-37-42
- Vladimir Müller and Yuri Tomilov, “Large” weak orbits of $C_0$-semigroups, Acta Sci. Math. (Szeged) 79 (2013), no. 3-4, 475–505. MR 3134501
- Jan Prüss, On the spectrum of $C_{0}$-semigroups, Trans. Amer. Math. Soc. 284 (1984), no. 2, 847–857. MR 743749, DOI 10.1090/S0002-9947-1984-0743749-9
- Jan Rozendaal, David Seifert, and Reinhard Stahn, Optimal rates of decay for operator semigroups on Hilbert spaces, Adv. Math. 346 (2019), 359–388. MR 3910799, DOI 10.1016/j.aim.2019.02.007
- Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
- Yu. S. Samoĭlenko, Spectral theory of families of selfadjoint operators, Mathematics and its Applications (Soviet Series), vol. 57, Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the Russian by E. V. Tisjachnij. MR 1135325, DOI 10.1007/978-94-011-3806-2
- Reinhard Stahn, Optimal decay rate for the wave equation on a square with constant damping on a strip, Z. Angew. Math. Phys. 68 (2017), no. 2, Paper No. 36, 10. MR 3609242, DOI 10.1007/s00033-017-0781-0
- Jan van Neerven, The asymptotic behaviour of semigroups of linear operators, Operator Theory: Advances and Applications, vol. 88, Birkhäuser Verlag, Basel, 1996. MR 1409370, DOI 10.1007/978-3-0348-9206-3
Bibliographic Information
- Moacir Aloisio
- Affiliation: Departamento de Matemática, UFAM, Manaus, AM, 69067-005 Brazil
- MR Author ID: 1328931
- Email: ec.moacir@gmail.com
- Silas L. Carvalho
- Affiliation: Departamento de Matemática, UFMG, Belo Horizonte, MG, 30161-970 Brazil
- MR Author ID: 897765
- Email: silas@mat.ufmg.br
- César R. de Oliveira
- Affiliation: Departamento de Matemática, UFSCar, São Carlos, SP, 13560-970 Brazil
- MR Author ID: 206915
- Email: oliveira@dm.ufscar.br
- Received by editor(s): July 9, 2019
- Received by editor(s) in revised form: October 20, 2019
- Published electronically: February 18, 2020
- Additional Notes: The first author was supported by CAPES (a Brazilian government agency).
The second author was partially supported by FAPEMIG (a Brazilian government agency; Universal Project 001/17/CEX-APQ-00352-17).
The third author was partially supported by CNPq (a Brazilian government agency, under contract 303503/2018-1). - Communicated by: Wenxian Shen
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 2509-2523
- MSC (2010): Primary 47D60; Secondary 47D08, 34L05
- DOI: https://doi.org/10.1090/proc/14926
- MathSciNet review: 4080893