The Bernstein problem for affine maximal type hypersurfaces under decaying convexity
HTML articles powered by AMS MathViewer
- by Shi-Zhong Du
- Proc. Amer. Math. Soc. 148 (2020), 2631-2643
- DOI: https://doi.org/10.1090/proc/14950
- Published electronically: March 4, 2020
- PDF | Request permission
Abstract:
We study a fourth order partial differential equation \begin{equation} u^{ij}D_{ij}w=0, \ \ w\equiv [\det D^2u]^{-\theta }, \ \ \theta \not =0\tag {\(\ast \)} \end{equation} of affine maximal type, which has attracted much attention in recent years. These models include the affine maximal equation for $\theta =\frac {N+1}{N+2}$ (see, for example, [Invent. Math. 140 (2000), pp. 399–422]) and the Abreu equation for $\theta =1$ (see, for example, [Int. J. Math. 9 (1998), pp. 641–651] or [Calc. Var. Partial Differential Equations 43 (2012), pp. 25–44] . In this paper, we will prove a Bernstein theorem of \eqref{e0.1} for all dimension $N\geq 2$ and \begin{equation*} \theta \in \Bigg (0,\frac {1}{2}-\frac {\sqrt {N-2}}{2\sqrt {N}}\Bigg )\bigcup \Bigg (\frac {1}{2}+\frac {\sqrt {N-2}}{2\sqrt {N}},+\infty \Bigg ) \end{equation*} under decaying convexity. Our result covers the affine maximal equation ($\theta =\frac {N+1}{N+2}$) for dimension $N\leq 3$ or the Abreu equation ($\theta =1$) for all dimension $N\geq 1$, which largely improves both cases by Du in [Nonlinear Anal. 187 (2019), pp. 170–179] ($N=2$ for $\theta =\frac {N+1}{N+2}$ and $N\leq 9$ for $\theta =1$).References
- Miguel Abreu, Kähler geometry of toric varieties and extremal metrics, Internat. J. Math. 9 (1998), no. 6, 641–651. MR 1644291, DOI 10.1142/S0129167X98000282
- S. N. Bernstein, Sur un theoreme de geometrie et ses applications aux equations aux derivees partielles du type elliptique, Comm. de la Soc. Math de Kharkov (2eme ser.), 15 (1915-17), 38–45, See alse: Über ein geometrisches Theorem und seine Anwendung auf die partiellen Differentialgleichungen vom elliptischen Typus, Math. Zeit., 26 (1927), 551–558.
- Eugenio Calabi, Hypersurfaces with maximal affinely invariant area, Amer. J. Math. 104 (1982), no. 1, 91–126. MR 648482, DOI 10.2307/2374069
- Eugenio Calabi, Convex affine maximal surfaces, Results Math. 13 (1988), no. 3-4, 199–223. Reprinted in Affine Differentialgeometrie [(Oberwolfach, 1986), 199–223, Tech. Univ. Berlin, Berlin, 1988]. MR 941331, DOI 10.1007/BF03323241
- Shiing Shen Chern, Affine minimal hypersurfaces, Minimal submanifolds and geodesics (Proc. Japan-United States Sem., Tokyo, 1977) North-Holland, Amsterdam-New York, 1979, pp. 17–30. MR 574250
- S. K. Donaldson, Interior estimates for solutions of Abreu’s equation, Collect. Math. 56 (2005), no. 2, 103–142. MR 2154300
- S. K. Donaldson, Extremal metrics on toric surfaces: a continuity method, J. Differential Geom. 79 (2008), no. 3, 389–432. MR 2433928
- Simon K. Donaldson, Constant scalar curvature metrics on toric surfaces, Geom. Funct. Anal. 19 (2009), no. 1, 83–136. MR 2507220, DOI 10.1007/s00039-009-0714-y
- Shi-Zhong Du, A Bernstein theorem for affine maximal type hypersurfaces under decaying convexity, Nonlinear Anal. 187 (2019), 170–179. MR 3947722, DOI 10.1016/j.na.2019.04.007
- Shi-Zhong Du and Xu-Qian Fan, A Bernstein theorem for affine maximal-type hypersurfaces, C. R. Math. Acad. Sci. Paris 357 (2019), no. 1, 66–73 (English, with English and French summaries). MR 3907599, DOI 10.1016/j.crma.2018.11.011
- Konrad Jörgens, Über die Lösungen der Differentialgleichung $rt-s^2=1$, Math. Ann. 127 (1954), 130–134 (German). MR 62326, DOI 10.1007/BF01361114
- An-Min Li and Fang Jia, A Bernstein property of affine maximal hypersurfaces, Ann. Global Anal. Geom. 23 (2003), no. 4, 359–372. MR 1973265, DOI 10.1023/A:1023059523458
- Fang Jia and An-Min Li, Interior estimates for solutions of a fourth order nonlinear partial differential equation, Differential Geom. Appl. 25 (2007), no. 5, 433–451. MR 2351421, DOI 10.1016/j.difgeo.2007.02.012
- An-Min Li and Fang Jia, A Bernstein property of some fourth order partial differential equations, Results Math. 56 (2009), no. 1-4, 109–139. MR 2575854, DOI 10.1007/s00025-009-0387-8
- An Min Li, Affine completeness and Euclidean completeness, Global differential geometry and global analysis (Berlin, 1990) Lecture Notes in Math., vol. 1481, Springer, Berlin, 1991, pp. 115–125. MR 1178525, DOI 10.1007/BFb0083635
- James Alexander McCoy, A Bernstein property of solutions to a class of prescribed affine mean curvature equations, Ann. Global Anal. Geom. 32 (2007), no. 2, 147–165. MR 2336182, DOI 10.1007/s10455-006-9051-7
- A. Martínez and F. Milán, On the affine Bernstein problem, Geom. Dedicata 37 (1991), no. 3, 295–302. MR 1094691, DOI 10.1007/BF00181405
- A. V. Pogorelov, On the improper convex affine hyperspheres, Geometriae Dedicata 1 (1972), no. 1, 33–46. MR 319126, DOI 10.1007/BF00147379
- Neil S. Trudinger and Xu-Jia Wang, The Bernstein problem for affine maximal hypersurfaces, Invent. Math. 140 (2000), no. 2, 399–422. MR 1757001, DOI 10.1007/s002220000059
- Neil S. Trudinger, The Chern conjecture in affine geometry, Second International Congress of Chinese Mathematicians, New Stud. Adv. Math., vol. 4, Int. Press, Somerville, MA, 2004, pp. 25–30. MR 2497969
- Shing Tung Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201–228. MR 431040, DOI 10.1002/cpa.3160280203
- S. T. Lau, Lectures on Differential Geometry, International Press, Boston (1994).
- Bin Zhou, The Bernstein theorem for a class of fourth order equations, Calc. Var. Partial Differential Equations 43 (2012), no. 1-2, 25–44. MR 2860401, DOI 10.1007/s00526-011-0401-3
Bibliographic Information
- Shi-Zhong Du
- Affiliation: Department of Mathematics, Shantou University, Shantou, 515063, People’s Republic of China
- MR Author ID: 817723
- Email: szdu@stu.edu.cn
- Received by editor(s): August 28, 2019
- Received by editor(s) in revised form: October 20, 2019, and October 30, 2019
- Published electronically: March 4, 2020
- Additional Notes: The author was partially supported by STU Scientific Research Foundation for Talents (SRFT-NTF16006) and Special Funds for Scientific and Technological Innovation Strategy in Guangdong Province.
- Communicated by: Jiaping Wang
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 2631-2643
- MSC (2010): Primary 53A15, 53A10, 35J60
- DOI: https://doi.org/10.1090/proc/14950
- MathSciNet review: 4080903