The action of a Coxeter element on an affine root system
HTML articles powered by AMS MathViewer
- by Nathan Reading and Salvatore Stella
- Proc. Amer. Math. Soc. 148 (2020), 2783-2798
- DOI: https://doi.org/10.1090/proc/14769
- Published electronically: April 16, 2020
Abstract:
The characterization of orbits of roots under the action of a Coxeter element is a fundamental tool in the study of finite root systems and their reflection groups. This paper develops the analogous tool in the affine setting, adding detail and uniformity to a result of Dlab and Ringel.References
- Norbert A’Campo, Sur les valeurs propres de la transformation de Coxeter, Invent. Math. 33 (1976), no. 1, 61–67 (French). MR 424967, DOI 10.1007/BF01425505
- Drew Armstrong, Generalized noncrossing partitions and combinatorics of Coxeter groups, Mem. Amer. Math. Soc. 202 (2009), no. 949, x+159. MR 2561274, DOI 10.1090/S0065-9266-09-00565-1
- S. Berman, Y. S. Lee, and R. V. Moody, The spectrum of a Coxeter transformation, affine Coxeter transformations, and the defect map, J. Algebra 121 (1989), no. 2, 339–357. MR 992769, DOI 10.1016/0021-8693(89)90070-7
- David Bessis, The dual braid monoid, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 5, 647–683 (English, with English and French summaries). MR 2032983, DOI 10.1016/j.ansens.2003.01.001
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- Thomas Brady and Colum Watt, $K(\pi ,1)$’s for Artin groups of finite type, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), 2002, pp. 225–250. MR 1950880, DOI 10.1023/A:1020902610809
- Thomas Brady and Colum Watt, A partial order on the orthogonal group, Comm. Algebra 30 (2002), no. 8, 3749–3754. MR 1922309, DOI 10.1081/AGB-120005817
- R. W. Carter, Conjugacy classes in the Weyl group, Compositio Math. 25 (1972), 1–59. MR 318337
- Frédéric Chapoton, Sergey Fomin, and Andrei Zelevinsky, Polytopal realizations of generalized associahedra, Canad. Math. Bull. 45 (2002), no. 4, 537–566. Dedicated to Robert V. Moody. MR 1941227, DOI 10.4153/CMB-2002-054-1
- A. J. Coleman, Killing and the Coxeter transformation of Kac-Moody algebras, Invent. Math. 95 (1989), no. 3, 447–477. MR 979360, DOI 10.1007/BF01393885
- H. S. M. Coxeter, Regular Polytopes, Methuen & Co., Ltd., London; Pitman Publishing Corp., New York, 1948; 1949. MR 0027148
- Vlastimil Dlab and Claus Michael Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 6 (1976), no. 173, v+57. MR 447344, DOI 10.1090/memo/0173
- Sergey Fomin and Andrei Zelevinsky, Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), no. 1, 63–121. MR 2004457, DOI 10.1007/s00222-003-0302-y
- Sergey Fomin and Andrei Zelevinsky, $Y$-systems and generalized associahedra, Ann. of Math. (2) 158 (2003), no. 3, 977–1018. MR 2031858, DOI 10.4007/annals.2003.158.977
- Sergey Fomin and Andrei Zelevinsky, Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), no. 1, 112–164. MR 2295199, DOI 10.1112/S0010437X06002521
- Robert B. Howlett, Coxeter groups and $M$-matrices, Bull. London Math. Soc. 14 (1982), no. 2, 137–141. MR 647197, DOI 10.1112/blms/14.2.137
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Mark Kleiner and Allen Pelley, Admissible sequences, preprojective representations of quivers, and reduced words in the Weyl group of a Kac-Moody algebra, Int. Math. Res. Not. IMRN 4 (2007), Art. ID rnm013, 28. MR 2338197, DOI 10.1093/imrn/rnm013
- Atsuo Kuniba, Kailash C. Misra, Masato Okado, Taichiro Takagi, and Jun Uchiyama, Crystals for Demazure modules of classical affine Lie algebras, J. Algebra 208 (1998), no. 1, 185–215. MR 1643999, DOI 10.1006/jabr.1998.7503
- I. G. Macdonald, Affine root systems and Dedekind’s $\eta$-function, Invent. Math. 15 (1972), 91–143. MR 357528, DOI 10.1007/BF01418931
- Robert Marsh, Markus Reineke, and Andrei Zelevinsky, Generalized associahedra via quiver representations, Trans. Amer. Math. Soc. 355 (2003), no. 10, 4171–4186. MR 1990581, DOI 10.1090/S0002-9947-03-03320-8
- Jon McCammond and Robert Sulway, Artin groups of Euclidean type, Invent. Math. 210 (2017), no. 1, 231–282. MR 3698343, DOI 10.1007/s00222-017-0728-2
- Nathan Reading, Chains in the noncrossing partition lattice, SIAM J. Discrete Math. 22 (2008), no. 3, 875–886. MR 2424827, DOI 10.1137/07069777X
- Nathan Reading, Noncrossing partitions, clusters and the Coxeter plane, Sém. Lothar. Combin. 63 (2010), Art. B63b, 32. MR 2734030
- Nathan Reading and David E. Speyer, Sortable elements in infinite Coxeter groups, Trans. Amer. Math. Soc. 363 (2011), no. 2, 699–761. MR 2728584, DOI 10.1090/S0002-9947-2010-05050-0
- Nathan Reading and David E. Speyer, Cambrian frameworks for cluster algebras of affine type, Trans. Amer. Math. Soc. 370 (2018), no. 2, 1429–1468. MR 3729507, DOI 10.1090/tran/7193
- Nathan Reading and Salvatore Stella, An affine almost positive roots model, J. Comb. Algebra 4 (2020), no. 1, 1–59. MR 4073889, DOI 10.4171/jca/37
- David E. Speyer, Powers of Coxeter elements in infinite groups are reduced, Proc. Amer. Math. Soc. 137 (2009), no. 4, 1295–1302. MR 2465651, DOI 10.1090/S0002-9939-08-09638-X
- Robert Steinberg, Finite reflection groups, Trans. Amer. Math. Soc. 91 (1959), 493–504. MR 106428, DOI 10.1090/S0002-9947-1959-0106428-2
- Robert Steinberg, Finite subgroups of $\textrm {SU}_2$, Dynkin diagrams and affine Coxeter elements, Pacific J. Math. 118 (1985), no. 2, 587–598. MR 789195, DOI 10.2140/pjm.1985.118.587
- Salvatore Stella, Polyhedral models for generalized associahedra via Coxeter elements, J. Algebraic Combin. 38 (2013), no. 1, 121–158. MR 3070123, DOI 10.1007/s10801-012-0396-7
Bibliographic Information
- Nathan Reading
- Affiliation: Department of Mathematics, North Carolina State University, Raleigh, North Carolina
- MR Author ID: 643756
- Salvatore Stella
- Affiliation: Dipartimento di Matematica “G. Castelnuovo”, Università degli Studi di Roma “La Sapienza”, Piazzale Aldo Moro, 2, 00185 Roma, Italy
- MR Author ID: 1025220
- ORCID: 0000-0001-5390-2081
- Email: stella@mat.uniroma1.it
- Received by editor(s): August 22, 2018
- Received by editor(s) in revised form: March 12, 2019, and July 13, 2019
- Published electronically: April 16, 2020
- Additional Notes: The first author was supported in part by NSF grants DMS-1101568 and DMS-1500949.
The second author was partially supported by NCSU, INdAM, and the ISF grant 1144/16. - Communicated by: Patricia L. Hersh
- © Copyright 2020 Nathan Reading and Salvatore Stella
- Journal: Proc. Amer. Math. Soc. 148 (2020), 2783-2798
- MSC (2010): Primary 20F55
- DOI: https://doi.org/10.1090/proc/14769
- MathSciNet review: 4099768