Angle sums of random simplices in dimensions $3$ and $4$
HTML articles powered by AMS MathViewer
- by Zakhar Kabluchko
- Proc. Amer. Math. Soc. 148 (2020), 3079-3086
- DOI: https://doi.org/10.1090/proc/14934
- Published electronically: February 26, 2020
- PDF | Request permission
Abstract:
Consider a random $d$-dimensional simplex whose vertices are $d+1$ random points sampled independently and uniformly from the unit sphere in $\mathbb {R}^d$. We show that the expected sum of solid angles at the vertices of this random simplex equals $\frac {1}{8}$ if $d=3$ and $\frac {539}{288\pi ^2}-\frac {1}{6}$ if $d=4$. The angles are measured as proportions of the full solid angle which is normalized to be $1$. Similar formulae are obtained if the vertices of the simplex are uniformly distributed in the unit ball. These results are special cases of general formulae for the expected angle sums of random beta simplices in dimensions $3$ and $4$.References
- Fernando Affentranger and Rolf Schneider, Random projections of regular simplices, Discrete Comput. Geom. 7 (1992), no. 3, 219–226. MR 1149653, DOI 10.1007/BF02187839
- Gilles Bonnet, Julian Grote, Daniel Temesvari, Christoph Thäle, Nicola Turchi, and Florian Wespi, Monotonicity of facet numbers of random convex hulls, J. Math. Anal. Appl. 455 (2017), no. 2, 1351–1364. MR 3671230, DOI 10.1016/j.jmaa.2017.06.054
- Gilles Bonnet, Giorgos Chasapis, Julian Grote, Daniel Temesvari, and Nicola Turchi, Threshold phenomena for high-dimensional random polytopes, Commun. Contemp. Math. 21 (2019), no. 5, 1850038, 30. MR 3980692, DOI 10.1142/S0219199718500384
- David V. Feldman and Daniel A. Klain, Angles as probabilities, Amer. Math. Monthly 116 (2009), no. 8, 732–735. MR 2572108, DOI 10.4169/193009709X460868
- Julian Grote, Zakhar Kabluchko, and Christoph Thäle, Limit theorems for random simplices in high dimensions, ALEA Lat. Am. J. Probab. Math. Stat. 16 (2019), no. 1, 141–177. MR 3903027, DOI 10.30757/alea.v16-06
- Branko Grünbaum, Convex polytopes, 2nd ed., Graduate Texts in Mathematics, vol. 221, Springer-Verlag, New York, 2003. Prepared and with a preface by Volker Kaibel, Victor Klee and Günter M. Ziegler. MR 1976856, DOI 10.1007/978-1-4613-0019-9
- Z. Kabluchko and D. Zaporozhets. Work in progress.
- Z. Kabluchko and D. Zaporozhets, Angles of the Gaussian simplex, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 476 (2018), no. Geometriya i Topologiya. 13, 79–91; English transl., J. Math. Sci. (N.Y.) 251 (2020), no. 4, 480–488. MR 3904043
- Z. Kabluchko, C. Thäle, and D. Zaporozhets, Beta polytopes and Poisson polyhedra: $f$-vectors and angles, Preprint at http://arxiv.org/abs/1805.01338, 2018.
- Zakhar Kabluchko, Daniel Temesvari, and Christoph Thäle, Expected intrinsic volumes and facet numbers of random beta-polytopes, Math. Nachr. 292 (2019), no. 1, 79–105. MR 3909222, DOI 10.1002/mana.201700255
- R. E. Miles, Isotropic random simplices, Advances in Appl. Probability 3 (1971), 353–382. MR 309164, DOI 10.2307/1426176
- M. A. Perles and G. C. Shephard, Angle sums of convex polytopes, Math. Scand. 21 (1967), 199–218 (1969). MR 243425, DOI 10.7146/math.scand.a-10860
- Harold Ruben and R. E. Miles, A canonical decomposition of the probability measure of sets of isotropic random points in $\textbf {R}^{n}$, J. Multivariate Anal. 10 (1980), no. 1, 1–18. MR 569792, DOI 10.1016/0047-259X(80)90077-9
- Rolf Schneider and Wolfgang Weil, Stochastic and integral geometry, Probability and its Applications (New York), Springer-Verlag, Berlin, 2008. MR 2455326, DOI 10.1007/978-3-540-78859-1
Bibliographic Information
- Zakhar Kabluchko
- Affiliation: Institut für Mathematische Stochastik, Westfälische Wilhelms-Universität Münster, Orléans-Ring 10, 48149 Münster, Germany
- MR Author ID: 696619
- ORCID: 0000-0001-8483-3373
- Email: zakhar.kabluchko@uni-muenster.de
- Received by editor(s): May 31, 2019
- Received by editor(s) in revised form: November 12, 2019
- Published electronically: February 26, 2020
- Additional Notes: The author was supported by the German Research Foundation under Germany’s Excellence Strategy EXC 2044 – 390685587, Mathematics Münster: Dynamics - Geometry - Structure.
- Communicated by: David Levin
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 3079-3086
- MSC (2010): Primary 52A22, 60D05; Secondary 52B11
- DOI: https://doi.org/10.1090/proc/14934
- MathSciNet review: 4099794