Uniqueness of minimal surfaces, Jacobi fields,and flat structures
HTML articles powered by AMS MathViewer
- by Hojoo Lee
- Proc. Amer. Math. Soc. 148 (2020), 3059-3071
- DOI: https://doi.org/10.1090/proc/14941
- Published electronically: March 18, 2020
- PDF | Request permission
Abstract:
Combining two generically independent flat structures introduced by Chern and Ricci, we construct geometric harmonic functions on minimal surfaces. We show that various periodic minimal surfaces admit new uniqueness results in terms of our geometric harmonic functions. We prove a new rigidity theorem for associate families connecting the doubly periodic Scherk graphs and the singly periodic Scherk towers.References
- W. Blaschke, Einfiihrung in die Differentialgeometrie, Springer, Berlin, 1950.
- S. S. Chern, Minimal submanifolds in a Riemannian manifold, University of Kansas, Department of Mathematics Technical Report 19 (New Series), University of Kansas, Lawrence, Kan., 1968. MR 0248648
- Shiing-shen Chern, Simple proofs of two theorems on minimal surfaces, Enseign. Math. (2) 15 (1969), 53–61. MR 246212
- Jaigyoung Choe and Richard Schoen, Isoperimetric inequality for flat surfaces, Proceedings of the 13th International Workshop on Differential Geometry and Related Fields [Vol. 13], Natl. Inst. Math. Sci. (NIMS), Taejŏn, 2009, pp. 103–109. MR 2641128
- M. do Carmo and C. K. Peng, Stable complete minimal surfaces in $\textbf {R}^{3}$ are planes, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 6, 903–906. MR 546314, DOI 10.1090/S0273-0979-1979-14689-5
- Casey Douglas, Genus one Scherk surfaces and their limits, J. Differential Geom. 96 (2014), no. 1, 1–59. MR 3161384
- Norio Ejiri and Toshihiro Shoda, The Morse index of a triply periodic minimal surface, Differential Geom. Appl. 58 (2018), 177–201. MR 3777753, DOI 10.1016/j.difgeo.2018.01.006
- Norio Ejiri, Shoichi Fujimori, and Toshihiro Shoda, A remark on limits of triply periodic minimal surfaces of genus 3. part B, Topology Appl. 196 (2015), no. part B, 880–903. MR 3431024, DOI 10.1016/j.topol.2015.05.014
- A. Fogden and S. T. Hyde, Parametrization of triply periodic minimal surfaces. II. Regular class solutions, Acta Crystallogr. A, Found. Crystallogr. 48 (1992) 575–591.
- A. Fogden, Parametrization of triply periodic minimal surfaces. III. General algorithm and specific examples for the irregular class, Acta Cryst. Sect. A 49 (1993), no. 3, 409–421. MR 1228292, DOI 10.1107/S0108767392010456
- A. Fogden and S. T. Hyde, Continuous Transformations of Cubic Minimal Surfaces, Eur. Phys. J. B-Condens. Matter Compl. Syst. 7 (1999), no. 1, 91–104.
- R. Finn and R. Osserman, On the Gauss curvature of non-parametric minimal surfaces, J. Analyse Math. 12 (1964), 351–364. MR 166694, DOI 10.1007/BF02807440
- Robert Huff, Flat structures and the triply periodic minimal surfaces $C(H)$ and $tC(P)$, Houston J. Math. 32 (2006), no. 4, 1011–1027. MR 2268465
- Luquésio P. Jorge and William H. Meeks III, The topology of complete minimal surfaces of finite total Gaussian curvature, Topology 22 (1983), no. 2, 203–221. MR 683761, DOI 10.1016/0040-9383(83)90032-0
- H. Karcher, Embedded minimal surfaces derived from Scherk’s examples, Manuscripta Math. 62 (1988), no. 1, 83–114. MR 958255, DOI 10.1007/BF01258269
- Hermann Karcher, The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature companions, Manuscripta Math. 64 (1989), no. 3, 291–357. MR 1003093, DOI 10.1007/BF01165824
- H. Karcher, Introduction to the complex analysis of minimal surfaces, http://www.math.uni-bonn.de/people/karcher/karcherTaiwan.pdf
- Miyuki Koiso, Paolo Piccione, and Toshihiro Shoda, On bifurcation and local rigidity of triply periodic minimal surfaces in $\Bbb R^3$, Ann. Inst. Fourier (Grenoble) 68 (2018), no. 6, 2743–2778 (English, with English and French summaries). MR 3897980, DOI 10.5802/aif.3222
- H. Blaine Lawson Jr., Complete minimal surfaces in $S^{3}$, Ann. of Math. (2) 92 (1970), 335–374. MR 270280, DOI 10.2307/1970625
- H. Blaine Lawson Jr., Some intrinsic characterizations of minimal surfaces, J. Analyse Math. 24 (1971), 151–161. MR 284922, DOI 10.1007/BF02790373
- Hojoo Lee, The uniqueness of Enneper’s surfaces and Chern-Ricci functions on minimal surfaces, Complex Var. Elliptic Equ. 64 (2019), no. 1, 126–131. MR 3885861, DOI 10.1080/17476933.2017.1423478
- William H. Meeks III, The theory of triply periodic minimal surfaces, Indiana Univ. Math. J. 39 (1990), no. 3, 877–936. MR 1078743, DOI 10.1512/iumj.1990.39.39043
- Robert Osserman, A survey of minimal surfaces, 2nd ed., Dover Publications, Inc., New York, 1986. MR 852409
- H. A. Schwarz, Gesammelte Mathematische Abhandlungen, vol. 1, Springer-Verlag, Berlin, 1890.
- Michael E. Taylor, Partial differential equations III. Nonlinear equations, 2nd ed., Applied Mathematical Sciences, vol. 117, Springer, New York, 2011. MR 2744149, DOI 10.1007/978-1-4419-7049-7
- M. Weber, Minimal Surface Archive, http://www.indiana.edu/~minimal/archive.
- Matthias Weber, Classical minimal surfaces in Euclidean space by examples: geometric and computational aspects of the Weierstrass representation, Global theory of minimal surfaces, Clay Math. Proc., vol. 2, Amer. Math. Soc., Providence, RI, 2005, pp. 19–63. MR 2167255
- Matthias Weber and Michael Wolf, Teichmüller theory and handle addition for minimal surfaces, Ann. of Math. (2) 156 (2002), no. 3, 713–795. MR 1954234, DOI 10.2307/3597281
Bibliographic Information
- Hojoo Lee
- Affiliation: Department of Mathematics and Institute of Pure and Applied Mathematics, Jeonbuk National University, Jeonju 54896, Korea
- MR Author ID: 692348
- Email: kiarostami@jbnu.ac.kr \textrm{and} compactkoala@gmail.com
- Received by editor(s): December 11, 2018
- Received by editor(s) in revised form: October 5, 2019
- Published electronically: March 18, 2020
- Communicated by: Jia-Ping Wang
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 3059-3071
- MSC (2010): Primary 53A10, 49Q05
- DOI: https://doi.org/10.1090/proc/14941
- MathSciNet review: 4099792
Dedicated: Dedicated to Jaigyoung Choe on the occasion of his $65$th birthday.