Regularity of $R(X)$ does not pass to finite unions
HTML articles powered by AMS MathViewer
- by J. F. Feinstein
- Proc. Amer. Math. Soc. 148 (2020), 2931-2936
- DOI: https://doi.org/10.1090/proc/14944
- Published electronically: March 18, 2020
- PDF | Request permission
Abstract:
We show that there are compact plane sets $X$, $Y$ such that $R(X)$ and $R(Y)$ are regular but $R(X \cup Y)$ is not regular.References
- Andrew Browder, Introduction to function algebras, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0246125
- H. G. Dales, Banach algebras and automatic continuity, London Mathematical Society Monographs. New Series, vol. 24, The Clarendon Press, Oxford University Press, New York, 2000. Oxford Science Publications. MR 1816726
- J. F. Feinstein, Trivial Jensen measures without regularity, Studia Math. 148 (2001), no. 1, 67–74. MR 1881440, DOI 10.4064/sm148-1-6
- J. F. Feinstein and S. Morley, Quasianalyticity in certain Banach function algebras, Studia Math. 238 (2017), no. 2, 133–153. MR 3648429, DOI 10.4064/sm8614-12-2016
- J. F. Feinstein, S. Morley, and H. Yang, Abstract Swiss cheese space and classicalisation of Swiss cheeses, J. Math. Anal. Appl. 438 (2016), no. 1, 119–141. MR 3462570, DOI 10.1016/j.jmaa.2016.02.004
- Joel Feinstein and Raymond Mortini, Partial regularity and $t$-analytic sets for Banach function algebras, Math. Z. 271 (2012), no. 1-2, 139–155. MR 2917137, DOI 10.1007/s00209-011-0856-0
- J. F. Feinstein and D. W. B. Somerset, Non-regularity for Banach function algebras, Studia Math. 141 (2000), no. 1, 53–68. MR 1782912, DOI 10.4064/sm-141-1-53-68
- J. F. Feinstein and H. Yang, Regularity points and Jensen measures for $R(X)$, Studia Math. 235 (2016), no. 1, 1–15. MR 3562702, DOI 10.4064/sm8351-7-2016
- T. W. Gamelin, Uniform Algebras, 2nd ed., Chelsea Publishing Company, New York, NY, 1984.
- Eberhard Kaniuth, A course in commutative Banach algebras, Graduate Texts in Mathematics, vol. 246, Springer, New York, 2009. MR 2458901, DOI 10.1007/978-0-387-72476-8
- Robert McKissick, A nontrivial normal sup norm algebra, Bull. Amer. Math. Soc. 69 (1963), 391–395. MR 146646, DOI 10.1090/S0002-9904-1963-10940-4
- Edgar Lee Stout, The theory of uniform algebras, Bogden & Quigley, Inc., Publishers, Tarrytown-on-Hudson, N.Y., 1971. MR 0423083
Bibliographic Information
- J. F. Feinstein
- Affiliation: University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- MR Author ID: 288617
- Email: Joel.Feinstein@nottingham.ac.uk
- Received by editor(s): April 8, 2019
- Received by editor(s) in revised form: July 30, 2019, and November 11, 2019
- Published electronically: March 18, 2020
- Communicated by: Stephen Dilworth
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 2931-2936
- MSC (2010): Primary 46J10
- DOI: https://doi.org/10.1090/proc/14944
- MathSciNet review: 4099781