CR regular embeddings of $S^{4n-1}$ in $\mathbb {C}^{2n+1}$
HTML articles powered by AMS MathViewer
- by Naohiko Kasuya
- Proc. Amer. Math. Soc. 148 (2020), 3021-3024
- DOI: https://doi.org/10.1090/proc/14962
- Published electronically: March 17, 2020
- PDF | Request permission
Abstract:
Ahern and Rudin have given an explicit construction of a totally real embedding of $S^3$ in $\mathbb {C}^3$. As a generalization of their example, we give an explicit example of a CR regular embedding of $S^{4n-1}$ in $\mathbb {C}^{2n+1}$. Consequently, we show that the odd dimensional sphere $S^{2m-1}$ with $m>1$ admits a CR regular embedding in $\mathbb {C}^{m+1}$ if and only if $m$ is even.References
- Patrick Ahern and Walter Rudin, Totally real embeddings of $S^3$ in $\textbf {C}^3$, Proc. Amer. Math. Soc. 94 (1985), no. 3, 460–462. MR 787894, DOI 10.1090/S0002-9939-1985-0787894-7
- Michèle Audin, Fibrés normaux d’immersions en dimension double, points doubles d’immersions lagragiennes et plongements totalement réels, Comment. Math. Helv. 63 (1988), no. 4, 593–623 (French). MR 966952, DOI 10.1007/BF02566781
- Elie Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes, Ann. Mat. Pura Appl. 11 (1933), no. 1, 17–90 (French). MR 1553196, DOI 10.1007/BF02417822
- Ali M. Elgindi, On the non-existence of CR-regular embeddings of $S^5$, Complex Var. Elliptic Equ. 64 (2019), no. 9, 1564–1567. MR 3976437, DOI 10.1080/17476933.2018.1542690
- Franc Forstnerič, On totally real embeddings into $\textbf {C}^n$, Exposition. Math. 4 (1986), no. 3, 243–255. MR 880125
- M. L. Gromov, A topological technique for the construction of solutions of differential equations and inequalities, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 221–225. MR 0420697
- M. L. Gromov, Convex integration of differential relations. I, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 329–343 (Russian). MR 0413206
- Mikhael Gromov, Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 9, Springer-Verlag, Berlin, 1986. MR 864505, DOI 10.1007/978-3-662-02267-2
- Howard Jacobowitz and Peter Landweber, Manifolds admitting generic immersions into $\Bbb C^N$, Asian J. Math. 11 (2007), no. 1, 151–165. MR 2304588, DOI 10.4310/AJM.2007.v11.n1.a14
- Naohiko Kasuya and Masamichi Takase, Generic immersions and totally real embeddings, Internat. J. Math. 29 (2018), no. 11, 1850073, 12. MR 3871721, DOI 10.1142/S0129167X18500738
- Naohiko Kasuya and Masamichi Takase, Erratum: Generic immersions and totally real embeddings, Internat. J. Math. 30 (2019), no. 12, 1992003, 2. MR 4039107, DOI 10.1142/s0129167x19920034
- Hon Fei Lai, Characteristic classes of real manifolds immersed in complex manifolds, Trans. Amer. Math. Soc. 172 (1972), 1–33. MR 314066, DOI 10.1090/S0002-9947-1972-0314066-8
- J. Alexander Lees, On the classification of Lagrange immersions, Duke Math. J. 43 (1976), no. 2, 217–224. MR 410764
- Marko Slapar, Cancelling complex points in codimension two, Bull. Aust. Math. Soc. 88 (2013), no. 1, 64–69. MR 3096869, DOI 10.1017/S0004972712000652
- Marko Slapar, CR regular embeddings and immersions of compact orientable 4-manifolds into $\Bbb {C}^3$, Internat. J. Math. 26 (2015), no. 5, 1550033, 5. MR 3345510, DOI 10.1142/S0129167X15500330
- Noboru Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables, J. Math. Soc. Japan 14 (1962), 397–429. MR 145555, DOI 10.2969/jmsj/01440397
- Noboru Tanaka, On generalized graded Lie algebras and geometric structures. I, J. Math. Soc. Japan 19 (1967), 215–254. MR 221418, DOI 10.2969/jmsj/01920215
- Rafael Torres, CR regular embeddings and immersions of 6-manifolds into complex 4-space, Proc. Amer. Math. Soc. 144 (2016), no. 8, 3493–3498. MR 3503716, DOI 10.1090/proc/13034
- Rafael Torres, An equivalence between pseudo-holomorphic embeddings into almost-complex Euclidean space and CR regular embeddings into complex space, Enseign. Math. 63 (2017), no. 1-2, 165–180. MR 3777134, DOI 10.4171/LEM/63-1/2-5
- R. O. Wells Jr., Holomorphic hulls and holomorphic convexity, Rice Univ. Stud. 54 (1968), no. 4, 75–84. MR 241690
- R. O. Wells Jr., Compact real submanifolds of a complex manifold with nondegenerate holomorphic tangent bundles, Math. Ann. 179 (1969), 123–129. MR 237823, DOI 10.1007/BF01350124
Bibliographic Information
- Naohiko Kasuya
- Affiliation: Department of Mathematics, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan
- MR Author ID: 1037602
- Email: nkasuya@cc.kyoto-su.ac.jp
- Received by editor(s): September 26, 2019
- Received by editor(s) in revised form: December 3, 2019
- Published electronically: March 17, 2020
- Additional Notes: The author was supported in part by the Grant-in-Aid for Young Scientists (B), No. 17K14193, Japan Society for the Promotion of Science
- Communicated by: Harold P. Boas
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 3021-3024
- MSC (2010): Primary 32V40, 53C40; Secondary 57R40
- DOI: https://doi.org/10.1090/proc/14962
- MathSciNet review: 4099788