Naohiko Kasuya

CR regular embeddings of S^{4n-1} in \mathbb{C}^{2n+1}

Proceedings of the American Mathematical Society

DOI: 10.1090/proc/14962

Accepted Manuscript

This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. It has not been copyedited, proofread, or finalized by AMS Production staff. Once the accepted manuscript has been copyedited, proofread, and finalized by AMS Production staff, the article will be published in electronic form as a “Recently Published Article” before being placed in an issue. That electronically published article will become the Version of Record.

This preliminary version is available to AMS members prior to publication of the Version of Record, and in limited cases it is also made accessible to everyone one year after the publication date of the Version of Record.

The Version of Record is accessible to everyone five years after publication in an issue.
CR REGULAR EMBEDDINGS OF S^{4n-1} IN \mathbb{C}^{2n+1}

NAOHIKO KASUYA

Abstract. Ahern and Rudin have given an explicit construction of a totally real embedding of S^3 in \mathbb{C}^3. As a generalization of their example, we give an explicit example of a CR regular embedding of S^{4n-1} in \mathbb{C}^{2n+1}. Consequently, we show that the odd dimensional sphere S^{2m-1} with $m > 1$ admits a CR regular embedding in \mathbb{C}^{m+1} if and only if m is even.

1. Introduction

Suppose $F: M^n \to \mathbb{C}^q$ is a smooth embedding of an n-manifold in \mathbb{C}^q. Then, for any point $x \in M^n$ and the standard complex structure J on \mathbb{C}^q, the following inequality holds:

$$\dim_{\mathbb{C}}(dF_x(T_xM^n) \cap JdF_x(T_xM^n)) \geq n - q.$$

If the equality holds for each point $x \in M^n$, the embedding F is called a CR regular embedding, and when $n = q$, we say that F is a totally real embedding and $F(M^n)$ is a totally real submanifold.

Totally real submanifolds have been investigated by many geometers and topologists. Especially, the problem of determining which manifolds admit a totally real embedding in \mathbb{C}^n has been widely studied from the viewpoint of the h-principle (Gromov [6, 7, 8], Lees [13], Forstnerič [5], Audin [2]). On the other hand, Ahern and Rudin [1] have constructed an explicit example of a totally real embedding of S^3 in \mathbb{C}^3. In the following, let $z = (z_1, z_2, \ldots, z_m)$ be the coordinates on \mathbb{C}^m and we regard S^{2m-1} as the unit sphere in \mathbb{C}^m.

Theorem 1.1 (Ahern-Rudin [1]). Let $P(z_1, z_2) = z_2 z_1 z_3^3 + i z_1 z_2^2 z_2$. Then, the embedding $F: S^3 \to \mathbb{C}^3$ defined by $F(z_1, z_2) = (z_1, z_2, P(z_1, z_2))$ is a totally real embedding.

CR regular embeddings also have been studied by many authors from various viewpoints (Cartan [3], Tanaka [16, 17], Wells [20, 21], Lai [12], Jacobowitz-Landweber [9], Slapar [14, 15], Torres [18, 19], Elgindi [4]). In [10, Section 5] and [11], the author and Takase have worked on the problem of determining when the n-sphere S^n admits a CR regular embedding in \mathbb{C}^q and have given some necessary conditions on (n, q). In particular, we have proved that the $(4n + 1)$-dimensional sphere S^{4n+1} does not admit a CR regular embedding in \mathbb{C}^{2n+2} ([11, Theorem 5.2 (c)]). In this paper, we settle the remaining codimension three case by generalizing Theorem 1.1. The following is our main theorem.

Theorem 1.2. Let

$$Q(z_1, z_2, \ldots, z_{2n-1}, z_{2n}) = \sum_{k=1}^{n} P(z_{2k-1}, z_{2k}),$$

where $P(x, y) = y^3 - 2x^2y$. Then, the embedding $F: S^{4n-1} \to \mathbb{C}^{2n+1}$ defined by

$$F(z_1, z_2, \ldots, z_{2n-1}, z_{2n}) = \left(z_1, z_2, \ldots, z_{2n-1}, z_{2n}, Q(z_1, z_2, \ldots, z_{2n-1}, z_{2n}) \right)$$

is a CR regular embedding.

Corollary 1.3. Let m be an integer greater than 1. The odd dimensional sphere S^{2m-1} admits a CR regular embedding in \mathbb{C}^{m+1} if and only if m is even.

2010 Mathematics Subject Classification. Primary 32V40, 53C40; Secondary 57R40.

Key words and phrases. CR regular, totally real, embedding.
2. Proof of Main Theorem

For a smooth complex-valued function f on \mathbb{C}^m, we use the following notations:

$$\frac{\partial f}{\partial z_j} = \sum_{j=1}^m \frac{\partial f}{\partial z_j} \, dz_j, \quad \hat{f} = \sum_{j=1}^m \frac{\partial f}{\partial \bar{z}_j},$$

$$\frac{\partial f}{\partial ar{z}} = (\frac{\partial f}{\partial z_1}, \ldots, \frac{\partial f}{\partial z_m}), \quad \frac{\partial f}{\partial z} = (\frac{\partial f}{\partial ar{z}_1}, \ldots, \frac{\partial f}{\partial ar{z}_m}).$$

Lemma 2.1. Let u and v be the real part and the imaginary part of a smooth function $f: \mathbb{C}^m \to \mathbb{C}$, respectively. Then, $\partial u \wedge \partial v = \frac{i}{2} \partial f \wedge \partial \bar{f}$.

Proof. Since $f = u + iv$, we have $\partial f = \partial u + i\partial v$ and $\partial \bar{f} = \partial u - i\partial v$. Hence,

$$\partial f \wedge \partial \bar{f} = (\partial u + i\partial v) \wedge (\partial u - i\partial v) = -2i\partial u \wedge \partial v.$$

\square

In [9], Jacobowitz and Landweber have given a necessary and sufficient condition for an embedding to be a CR regular embedding.

Proposition 2.2 (Jacobowitz-Landweber [9]). An embedding $F: M^{2n+1} \to \mathbb{C}^{n+q}$ is a CR regular embedding if and only if the submanifold $F(M^{2n+1})$ is given by simultaneous real equations

$$\rho_j(z_1, z_2, \ldots, z_{n+q}) = 0 \quad (j = 1, \ldots, k)$$

satisfying $\partial \rho_1 \wedge \cdots \wedge \partial \rho_k \neq 0$ at each point of $F(M^{2n+1})$.

Applying this proposition to the case where the submanifold is the graph of a function, we obtain the following.

Proposition 2.3. Let f_j ($j = 1, \ldots, q$) be smooth complex-valued functions on \mathbb{C}^m with $1 \leq q \leq m-1$. The embedding $F: S^{2m-1} \to \mathbb{C}^{m+q}$ defined by

$$F(z) = (z, f_1(z), \ldots, f_q(z))$$

is a CR regular embedding if and only if the $(q+1)$ complex vectors z, $\frac{\partial f_j}{\partial \bar{z}}(z)$ ($j = 1, \ldots, q$) are linearly independent over \mathbb{C} for each $z \in S^{2m-1}$.

Proof. The submanifold $F(S^{2m-1})$ is described as

$$\{ (z, z_{m+1}, \ldots, z_{m+q}) \in \mathbb{C}^{m+q} \mid \|z\|^2 = 1, z_{m+1} = f_1(z), \ldots, z_{m+q} = f_q(z) \}.$$

We define smooth real functions $\rho_1(z), \ldots, \rho_{2q+1}(z)$ by

$$\rho_1 = -1 + \sum_{k=1}^m z_k \bar{z}_k, \quad \rho_j(z) = f_j(z) + i\rho_{2j+1} \quad (j = 1, \ldots, q),$$

for which we have

$$F(S^{2m-1}) = \rho_1^{-1}(0) \cap \rho_2^{-1}(0) \cap \cdots \cap \rho_{2q+1}^{-1}(0).$$

By Lemma 2.1,

$$\partial \rho_{2j} \wedge \partial \rho_{2j+1} = \frac{i}{2} \partial (z_{m+1} - f_j(z)) \wedge (\partial z_{m+1} - \partial f_j) = \frac{i}{2} (\partial f_j) \wedge (\partial z_{m+1} - \partial f_j).$$

Therefore, $\partial \rho_1 \wedge \partial \rho_2 \wedge \cdots \wedge \partial \rho_{2q+1} \neq 0$ holds if and only if

$$\left(\bar{z}_1 dz_1 + \cdots + \bar{z}_m dz_m \right) \wedge \left(\frac{\partial f_1}{\partial \bar{z}_1} dz_1 + \cdots + \frac{\partial f_1}{\partial \bar{z}_m} dz_m \right) \wedge \cdots \wedge \left(\frac{\partial f_q}{\partial \bar{z}_1} dz_1 + \cdots + \frac{\partial f_q}{\partial \bar{z}_m} dz_m \right) \neq 0.$$
holds. This condition is equivalent to the complex vectors
\[z = (z_1, \ldots, z_m), \frac{\partial f_1}{\partial z_j} = (\frac{\partial f_1}{\partial z_1}, \ldots, \frac{\partial f_1}{\partial z_m}), \ldots, \frac{\partial f_n}{\partial z_j} = (\frac{\partial f_n}{\partial z_1}, \ldots, \frac{\partial f_n}{\partial z_m}) \]
being linearly independent over \(\mathbb{C} \).

Now, we are ready to prove our main theorem. First we reprove Ahern-Rudin’s result from the viewpoint of Proposition 2.3, and then, prove Theorem 1.2.

Proof of Theorem 1.1. When \((z_1, z_2) \neq (0, 0) \), the two vectors \((z_1, z_2) \) and \(\left(\frac{\partial P}{\partial z_1}, \frac{\partial P}{\partial z_2} \right) \) are linearly independent over \(\mathbb{C} \). Indeed, the function
\[z_2 \frac{\partial P}{\partial z_1} - z_1 \frac{\partial P}{\partial z_2} = |z_1|^2(|z_2|^2 - 2|z_1|^2) - i|z_1|^2(|z_1|^2 - 2|z_2|^2) \]
vanishes only at the origin \((0, 0) \in \mathbb{C}^2 \). Therefore, by Proposition 2.3, the embedding \(F \) is a totally real embedding.

Proof of Theorem 1.2. Suppose \(z = (z_1, z_2, \ldots, z_{2n-1}, z_{2n}) = (0, 0, \ldots, 0) \). Then there exists \(j \) such that \((z_{j-1}, z_j) \neq (0, 0) \). For such a \(j \), the two vectors \((z_{j-1}, z_j) \) and \(\left(\frac{\partial P}{\partial z_1}, \frac{\partial P}{\partial z_2} \right) \) are linearly independent over \(\mathbb{C} \) by the proof of Theorem 1.1. Hence, the two vectors \(z = (z_1, z_2, \ldots, z_{2n-1}, z_{2n}) \) and
\[\frac{\partial Q}{\partial z}(z) = \left(\frac{\partial P}{\partial z}(z_1, z_2), \ldots, \frac{\partial P}{\partial z}(z_{2n-1}, z_{2n}) \right) \]
are linearly independent over \(\mathbb{C} \). Then, by Proposition 2.3, the embedding \(F \) is CR regular.

Acknowledgements

The author has been supported in part by the Grant-in-Aid for Young Scientists (B), No. 17K14193, Japan Society for the Promotion of Science.

References

NAOHIKO KASUYA: DEPARTMENT OF MATHEMATICS, KYOTO SANGYO UNIVERSITY, KAMIGAMO-MOTOYAMA, KITA-KU, KYOTO, 603-8555, JAPAN.

Email address: nkasuya@cc.kyoto-su.ac.jp