A structure of punctual dimension two
HTML articles powered by AMS MathViewer
- by Alexander Melnikov and Keng Meng Ng
- Proc. Amer. Math. Soc. 148 (2020), 3113-3128
- DOI: https://doi.org/10.1090/proc/15020
- Published electronically: April 14, 2020
- PDF | Request permission
Abstract:
This paper contributes to the general program which aims to eliminate an unbounded search from proofs and procedures in computable structure theory. A countable structure in a finite language is punctual if its domain is $\omega$ and its operations and relations are primitive recursive. A function $f$ is punctual if both $f$ and $f^{-1}$ are primitive recursive. We prove that there exists a countable rigid algebraic structure which has exactly two punctual presentations, up to punctual isomorphism.References
- C. J. Ash and J. Knight, Computable structures and the hyperarithmetical hierarchy, Studies in Logic and the Foundations of Mathematics, vol. 144, North-Holland Publishing Co., Amsterdam, 2000. MR 1767842
- P. E. Alaev, Structures computable in polynomial time. I, Algebra Logika 55 (2016), no. 6, 647–669 (Russian); English transl., Algebra Logic 55 (2016), no. 6, 421–435. MR 3722412, DOI 10.1007/s10469-017-9416-y
- P. E. Alaev, Structures computable in polynomial time. II, Algebra Logika 56 (2017), no. 6, 651–670 (Russian); English transl., Algebra Logic 56 (2017), no. 6, 429–442. MR 3786915, DOI 10.1007/s10469-018-9465-x
- Pavel Alaev and Victor Selivanov, Polynomial-time presentations of algebraic number fields, Sailing routes in the world of computation, Lecture Notes in Comput. Sci., vol. 10936, Springer, Cham, 2018, pp. 20–29. MR 3840148, DOI 10.1007/978-3-319-94418-0_{2}
- Nikolay Bazhenov, Rod Downey, Iskander Kalimullin, and Alexander Melnikov, Foundations of online structure theory, Bull. Symb. Log. 25 (2019), no. 2, 141–181. MR 3984971, DOI 10.1017/bsl.2019.20
- Douglas Cenzer, Rodney G. Downey, Jeffrey B. Remmel, and Zia Uddin, Space complexity of abelian groups, Arch. Math. Logic 48 (2009), no. 1, 115–140. MR 2480938, DOI 10.1007/s00153-008-0113-3
- Douglas Cenzer and Jeffrey B. Remmel, Polynomial-time versus computable Boolean algebras, Recursion theory and complexity (Kazan, 1997) De Gruyter Ser. Log. Appl., vol. 2, de Gruyter, Berlin, 1999, pp. 15–53. MR 1724930
- Douglas Cenzer and Jeffrey Remmel, Polynomial-time versus recursive models, Ann. Pure Appl. Logic 54 (1991), no. 1, 17–58. MR 1130218, DOI 10.1016/0168-0072(91)90008-A
- Douglas Cenzer and Jeffrey Remmel, Polynomial-time abelian groups, Ann. Pure Appl. Logic 56 (1992), no. 1-3, 313–363. MR 1167697, DOI 10.1016/0168-0072(92)90076-C
- D. Cenzer and J. B. Remmel, Complexity-theoretic model theory and algebra, Handbook of recursive mathematics, Vol. 1, Stud. Logic Found. Math., vol. 138, North-Holland, Amsterdam, 1998, pp. 381–513. MR 1673574, DOI 10.1016/S0049-237X(98)80011-6
- Barbara F. Csima and Jonathan Stephenson, Finite computable dimension and degrees of categoricity, Ann. Pure Appl. Logic 170 (2019), no. 1, 58–94. MR 3870041, DOI 10.1016/j.apal.2018.08.012
- Rod Downey, Matthew Harrison-Trainor, Iskander Kalimullin, Alexander Melnikov, and Daniel Turetsy, Graphs are not universal for online computability, Preprint, 2018.
- David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S. Paterson, and William P. Thurston, Word processing in groups, Jones and Bartlett Publishers, Boston, MA, 1992. MR 1161694, DOI 10.1201/9781439865699
- Yuri L. Ershov and Sergei S. Goncharov, Constructive models, Siberian School of Algebra and Logic, Consultants Bureau, New York, 2000. MR 1749622, DOI 10.1007/978-1-4615-4305-3
- Ekaterina B. Fokina, Valentina Harizanov, and Alexander Melnikov, Computable model theory, Turing’s legacy: developments from Turing’s ideas in logic, Lect. Notes Log., vol. 42, Assoc. Symbol. Logic, La Jolla, CA, 2014, pp. 124–194. MR 3497661
- S. S. Gončarov, The problem of the number of nonautoequivalent constructivizations, Algebra i Logika 19 (1980), no. 6, 621–639, 745 (Russian). MR 622606
- S. S. Gončarov, Groups with a finite number of constructivizations, Dokl. Akad. Nauk SSSR 256 (1981), no. 2, 269–272 (Russian). MR 600943
- Serge Grigorieff, Every recursive linear ordering has a copy in $\textrm {DTIME}$-$\textrm {SPACE}(n,\log (n))$, J. Symbolic Logic 55 (1990), no. 1, 260–276. MR 1043556, DOI 10.2307/2274966
- Denis Roman Hirschfeldt, Degree spectra of relations on computable structures, ProQuest LLC, Ann Arbor, MI, 1999. Thesis (Ph.D.)–Cornell University. MR 2699435
- Denis R. Hirschfeldt, Bakhadyr Khoussainov, Richard A. Shore, and Arkadii M. Slinko, Degree spectra and computable dimensions in algebraic structures, Ann. Pure Appl. Logic 115 (2002), no. 1-3, 71–113. MR 1897023, DOI 10.1016/S0168-0072(01)00087-2
- Matthew Harrison-Trainor, Alexander Melnikov, Russell Miller, and Antonio Montalbán, Computable functors and effective interpretability, J. Symb. Log. 82 (2017), no. 1, 77–97. MR 3625736, DOI 10.1017/jsl.2016.12
- Henry A. Kierstead, An effective version of Dilworth’s theorem, Trans. Amer. Math. Soc. 268 (1981), no. 1, 63–77. MR 628446, DOI 10.1090/S0002-9947-1981-0628446-X
- H. A. Kierstead, On-line coloring $k$-colorable graphs, Israel J. Math. 105 (1998), 93–104. MR 1639735, DOI 10.1007/BF02780324
- I. Sh. Kalimullin, A. G. Mel′nikov, and K. M. Ng, Different versions of categoricity without delays, Algebra Logika 56 (2017), no. 2, 256–266 (Russian); English transl., Algebra Logic 56 (2017), no. 2, 171–177. MR 3744783, DOI 10.1007/s10469-017-9437-6
- Iskander Kalimullin, Alexander Melnikov, and Keng Meng Ng, Algebraic structures computable without delay, Theoret. Comput. Sci. 674 (2017), 73–98. MR 3634709, DOI 10.1016/j.tcs.2017.01.029
- Bakhadyr Khoussainov and Anil Nerode, Automatic presentations of structures, Logic and computational complexity (Indianapolis, IN, 1994) Lecture Notes in Comput. Sci., vol. 960, Springer, Berlin, 1995, pp. 367–392. MR 1449670, DOI 10.1007/3-540-60178-3_{9}3
- H. A. Kierstead, S. G. Penrice, and W. T. Trotter, On-line coloring and recursive graph theory, SIAM J. Discrete Math. 7 (1994), no. 1, 72–89. MR 1259011, DOI 10.1137/S0895480192224737
- Bakhadyr Khoussainov and Richard A. Shore, Effective model theory: the number of models and their complexity, Models and computability (Leeds, 1997) London Math. Soc. Lecture Note Ser., vol. 259, Cambridge Univ. Press, Cambridge, 1999, pp. 193–239. MR 1721168, DOI 10.1017/CBO9780511565670.009
- László Lovász, Michael Saks, and W. T. Trotter, An on-line graph coloring algorithm with sublinear performance ratio, Discrete Math. 75 (1989), no. 1-3, 319–325. Graph theory and combinatorics (Cambridge, 1988). MR 1001404, DOI 10.1016/0012-365X(89)90096-4
- A. I. Mal′cev, Constructive algebras. I, Uspehi Mat. Nauk 16 (1961), no. 3 (99), 3–60 (Russian). MR 0151377
- Alexander G. Melnikov, Eliminating unbounded search in computable algebra, Unveiling dynamics and complexity, Lecture Notes in Comput. Sci., vol. 10307, Springer, Cham, 2017, pp. 77–87. MR 3678739, DOI 10.1007/978-3-319-58741-7
- Russell Miller, An introduction to computable model theory on groups and fields, Groups Complex. Cryptol. 3 (2011), no. 1, 25–45. MR 2806080, DOI 10.1515/GCC.2011.002
- Alexander G. Melnikov and Keng Meng Ng, The back-and-forth method and computability without delay, Israel J. Math. 234 (2019), no. 2, 959–1000. MR 4040850, DOI 10.1007/s11856-019-1948-5
- Russell Miller, Bjorn Poonen, Hans Schoutens, and Alexandra Shlapentokh, A computable functor from graphs to fields, J. Symb. Log. 83 (2018), no. 1, 326–348. MR 3796287, DOI 10.1017/jsl.2017.50
- J. B. Remmel, Graph colorings and recursively bounded $\Pi ^0_1$-classes, Ann. Pure Appl. Logic 32 (1986), no. 2, 185–194. MR 863333, DOI 10.1016/0168-0072(86)90051-5
- Todor Tsankov, The additive group of the rationals does not have an automatic presentation, J. Symbolic Logic 76 (2011), no. 4, 1341–1351. MR 2895399, DOI 10.2178/jsl/1318338853
Bibliographic Information
- Alexander Melnikov
- Affiliation: Department of Mathematics, Massey University Auckland, Private Bag 102904, North Shore, Auckland 0745, New Zealand
- Email: alexander.g.melnikov@gmail.com
- Keng Meng Ng
- Affiliation: Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- MR Author ID: 833062
- Email: selwyn.km.ng@gmail.com
- Received by editor(s): October 6, 2019
- Published electronically: April 14, 2020
- Additional Notes: The first author was partially supported by the Marsden Foundation of New Zealand.
The second author was partially supported by the grants MOE2015-T2-2-055 and RG131/17. - Communicated by: Heike Mildenberger
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 3113-3128
- MSC (2010): Primary 03D45; Secondary 03D20, 03D15
- DOI: https://doi.org/10.1090/proc/15020
- MathSciNet review: 4099797