The Lane-Emden equation with variable double-phase and multiple regime
HTML articles powered by AMS MathViewer
- by Claudianor O. Alves and Vicenţiu D. Rădulescu
- Proc. Amer. Math. Soc. 148 (2020), 2937-2952
- DOI: https://doi.org/10.1090/proc/15050
- Published electronically: April 9, 2020
- PDF | Request permission
Abstract:
We are concerned with the study of the Lane-Emden equation with variable exponent and Dirichlet boundary condition. The feature of this paper is that the analysis that we develop does not assume any subcritical hypotheses and the reaction can fulfill a mixed regime (subcritical, critical, and supercritical). We consider the radial and the nonradial cases, as well as a singular setting. The proofs combine variational and analytic methods with a version of the Palais principle of symmetric criticality.References
- Claudianor O. Alves, Grey Ercole, and M. Daniel Huamán Bolaños, Ground state solutions for a semilinear elliptic problem with critical-subcritical growth, Adv. Nonlinear Anal. 9 (2020), no. 1, 108–123. MR 3935865, DOI 10.1515/anona-2017-0170
- A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), no. 3, 253–294. MR 929280, DOI 10.1002/cpa.3160410302
- Anouar Bahrouni, Vicenţiu D. Rădulescu, and Dušan D. Repovš, Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves, Nonlinearity 32 (2019), no. 7, 2481–2495. MR 3957220, DOI 10.1088/1361-6544/ab0b03
- Paolo Baroni, Maria Colombo, and Giuseppe Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal. 121 (2015), 206–222. MR 3348922, DOI 10.1016/j.na.2014.11.001
- Paolo Baroni, Maria Colombo, and Giuseppe Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations 57 (2018), no. 2, Paper No. 62, 48. MR 3775180, DOI 10.1007/s00526-018-1332-z
- L. Beck and G. Mingione, Lipschitz bounds and non-uniform ellipticity, Commun. Pure Appl. Math., 73 (2020), no. 5, 944-1034, DOI 10.1002/cpa.21880.
- Matija Cencelj, Vicenţiu D. Rădulescu, and Dušan D. Repovš, Double phase problems with variable growth. part A, Nonlinear Anal. 177 (2018), no. part A, 270–287. MR 3865198, DOI 10.1016/j.na.2018.03.016
- Maria Colombo and Giuseppe Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215 (2015), no. 2, 443–496. MR 3294408, DOI 10.1007/s00205-014-0785-2
- Maria Colombo and Giuseppe Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal. 218 (2015), no. 1, 219–273. MR 3360738, DOI 10.1007/s00205-015-0859-9
- Lars Diening, Petteri Harjulehto, Peter Hästö, and Michael Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017, Springer, Heidelberg, 2011. MR 2790542, DOI 10.1007/978-3-642-18363-8
- Xianling Fan, Jishen Shen, and Dun Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega )$, J. Math. Anal. Appl. 262 (2001), no. 2, 749–760. MR 1859337, DOI 10.1006/jmaa.2001.7618
- Louis Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $\textbf {R}^N$, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), no. 4, 787–809. MR 1718530, DOI 10.1017/S0308210500013147
- Louis Jeanjean, Local conditions insuring bifurcation from the continuous spectrum, Math. Z. 232 (1999), no. 4, 651–664. MR 1727546, DOI 10.1007/PL00004774
- Jun Kobayashi and Mitsuharu Ôtani, The principle of symmetric criticality for non-differentiable mappings, J. Funct. Anal. 214 (2004), no. 2, 428–449. MR 2083309, DOI 10.1016/j.jfa.2004.04.006
- P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145–201. MR 834360, DOI 10.4171/RMI/6
- Paolo Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986), no. 5, 391–409 (English, with French summary). MR 868523, DOI 10.1016/S0294-1449(16)30379-1
- Paolo Marcellini, Regularity and existence of solutions of elliptic equations with $p,q$-growth conditions, J. Differential Equations 90 (1991), no. 1, 1–30. MR 1094446, DOI 10.1016/0022-0396(91)90158-6
- Paolo Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), no. 1, 1–25. MR 1401415
- Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Classics in Mathematics, Springer-Verlag, Berlin, 2008. Reprint of the 1966 edition [MR0202511]. MR 2492985, DOI 10.1007/978-3-540-69952-1
- Julian Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin, 1983. MR 724434, DOI 10.1007/BFb0072210
- Richard S. Palais, The principle of symmetric criticality, Comm. Math. Phys. 69 (1979), no. 1, 19–30. MR 547524, DOI 10.1007/BF01941322
- Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, and Dušan D. Repovš, Double-phase problems with reaction of arbitrary growth, Z. Angew. Math. Phys. 69 (2018), no. 4, Paper No. 108, 21. MR 3836199, DOI 10.1007/s00033-018-1001-2
- Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, and Dušan D. Repovš, Double-phase problems and a discontinuity property of the spectrum, Proc. Amer. Math. Soc. 147 (2019), no. 7, 2899–2910. MR 3973893, DOI 10.1090/proc/14466
- Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, and Dušan D. Repovš, Ground state and nodal solutions for a class of double phase problems, Z. Angew. Math. Phys. 71 (2020), no. 1, Paper No. 15, 15. MR 4045487, DOI 10.1007/s00033-019-1239-3
- Vicenţiu D. Rădulescu and Dušan D. Repovš, Partial differential equations with variable exponents, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2015. Variational methods and qualitative analysis. MR 3379920, DOI 10.1201/b18601
- Walter A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2, 149–162. MR 454365, DOI 10.1007/BF01626517
- Qihu Zhang and Vicenţiu D. Rădulescu, Double phase anisotropic variational problems and combined effects of reaction and absorption terms, J. Math. Pures Appl. (9) 118 (2018), 159–203 (English, with English and French summaries). MR 3852472, DOI 10.1016/j.matpur.2018.06.015
- V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675–710, 877 (Russian). MR 864171
- V. V. Zhikov, On variational problems and nonlinear elliptic equations with nonstandard growth conditions, J. Math. Sci. (N.Y.) 173 (2011), no. 5, 463–570. Problems in mathematical analysis. No. 54. MR 2839881, DOI 10.1007/s10958-011-0260-7
Bibliographic Information
- Claudianor O. Alves
- Affiliation: Unidade Acadêmica de Matemática, Universidade Federal de Campina Grande, 58429-970, Campina Grande - PB, Brazil
- MR Author ID: 610236
- Email: coalves@mat.ufcg.edu.br
- Vicenţiu D. Rădulescu
- Affiliation: Faculty of Applied Mathematics, AGH University of Science and Technology, 30-059 Kraków, Poland; and Department of Mathematics, University of Craiova, 200585 Craiova, Romania; and Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80257, Jeddah 21589, Saudi Arabia
- MR Author ID: 143765
- ORCID: 0000-0003-4615-5537
- Email: radulescu@inf.ucv.ro
- Received by editor(s): November 11, 2019
- Published electronically: April 9, 2020
- Communicated by: Catherine Sulem
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 2937-2952
- MSC (2010): Primary 35J20; Secondary 35J75, 35J92, 35P30
- DOI: https://doi.org/10.1090/proc/15050
- MathSciNet review: 4099782