Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Dense lines of curvature on convex surfaces
HTML articles powered by AMS MathViewer

by John Guckenheimer PDF
Proc. Amer. Math. Soc. 148 (2020), 3537-3549 Request permission

Abstract:

The lines of curvature of a surface embedded in $\mathbb {R}^3$ together with umbilic points comprise its principal foliations. Monge described the principal foliations of the triaxial ellipsoid in the eighteenth century, but few examples beyond these and surfaces of revolution have been characterized since. This paper analyzes the principal foliations of perturbations of the ellipsoid. The results are surprising. Notably, surfaces with dense lines of curvature are prevalent A geometric construction establishes an intimate relation of the principal foliation on perturbed ellipsoids with nonvanishing vector fields on the two dimensional torus $T^2$, rather than the two sphere $S^2$. The dynamics of nonvanishing vector fields on $T^2$ with a global cross-section has been extensively studied. In generic one-parameter families, vector fields with dense, quasiperiodic trajectories occur at positive measure sets of parameters. This paper establishes a comparable result proving that large sets of embeddings of $S^2$ in $\mathbb {R}^3$ have dense lines of curvature.
References
  • Pierre Alliez, David Cohen-Steiner, Olivier Devillers, Bruno Lévy, and Mathieu Desbrun, Anisotropic polygonal remeshing, ACM Trans. Graph., 22(3):485–493, July 2003.
  • Ángel Montesinos Amilibia, http://uv.es/montesin/superficies, 1999.
  • Aleksandr A. Andronov and Lev. S. Pontryagin, Systemes grossiers, Dokl. Akad. Nauk. SSSR, 14:247–251, 1937.
  • M. V. Berry, Focusing and twinkling: critical exponents from catastrophes in non-Gaussian random short waves, J. Phys. A 10 (1977), no. 12, 2061–2081. MR 489389
  • J. W. Bruce and D. L. Fidal, On binary differential equations and umbilics, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), no. 1-2, 147–168. MR 985996, DOI 10.1017/S0308210500025087
  • Wujun Che, Jean-Claude Paul, and Xiaopeng Zhang, Lines of curvature and umbilical points for implicit surfaces, Comput. Aided Geom. Design 24 (2007), no. 7, 395–409. MR 2347859, DOI 10.1016/j.cagd.2007.04.005
  • Gaston Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal. Quatrième partie, Chelsea Publishing Co., Bronx, N.Y., 1972. Déformation infiniment petite et representation sphérique; Réimpression de la première édition de 1896. MR 0396214
  • Welington de Melo and Sebastian van Strien, One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 25, Springer-Verlag, Berlin, 1993. MR 1239171, DOI 10.1007/978-3-642-78043-1
  • Leonhard Euler, Recherches sur la courbure des surfaces, Mémoires de l’académie des sciences de Berlin, 16:119–143, 1767.
  • Ronaldo Garcia and Jorge Sotomayor, Structurally stable configurations of lines of mean curvature and umbilic points on surfaces immersed in ${\Bbb R}^3$, Publ. Mat. 45 (2001), no. 2, 431–466. MR 1876916, DOI 10.5565/PUBLMAT_{4}5201_{0}8
  • Ronaldo Garcia and Jorge Sotomayor, Differential equations of classical geometry, a qualitative theory, Publicações Matemáticas do IMPA. [IMPA Mathematical Publications], Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2009. 27$^\textrm {o}$ Colóquio Brasileiro de Matemática. [27th Brazilian Mathematics Colloquium]. MR 2532372
  • C. Gutiérrez and J. Sotomayor, An approximation theorem for immersions with stable configurations of lines of principal curvature, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 332–368. MR 730276, DOI 10.1007/BFb0061423
  • C. Gutierrez and J. Sotomayor, Closed principal lines and bifurcation, Bol. Soc. Brasil. Mat. 17 (1986), no. 1, 1–19. MR 869705, DOI 10.1007/BF02585473
  • C. Gutierrez and J. Sotomayor, Periodic lines of curvature bifurcating from Darbouxian umbilical connections, Bifurcations of planar vector fields (Luminy, 1989) Lecture Notes in Math., vol. 1455, Springer, Berlin, 1990, pp. 196–229. MR 1094381, DOI 10.1007/BFb0085394
  • Carlos Gutierrez and Jorge Sotomayor, Lines of curvature, umbilic points and Carathéodory conjecture, Resenhas 3 (1998), no. 3, 291–322. MR 1633013
  • Carlos Gutiérrez, Jorge Sotomayor, and Ronaldo Garcia, Bifurcations of umbilic points and related principal cycles, J. Dynam. Differential Equations 16 (2004), no. 2, 321–346. MR 2105778, DOI 10.1007/s10884-004-2783-9
  • Michael-Robert Herman, Mesure de Lebesgue et nombre de rotation, Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976) Lecture Notes in Math., Vol. 597, Springer, Berlin, 1977, pp. 271–293 (French). MR 0458480
  • Morris W. Hirsch, Stephen Smale, and Robert L. Devaney, Differential equations, dynamical systems, and an introduction to chaos, 3rd ed., Elsevier/Academic Press, Amsterdam, 2013. MR 3293130, DOI 10.1016/B978-0-12-382010-5.00001-4
  • Gaspard Monge, Sur les lignes de courbure de la surface de l’ellipsoide, Application de l’Analyse á la Géometrie (5th edition), pages 139–160. Bachelier, Paris, 1796.
  • M. M. Peixoto, Structural stability on two-dimensional manifolds, Topology 1 (1962), 101–120. MR 142859, DOI 10.1016/0040-9383(65)90018-2
  • H. Poincaré, Mémoire, Acta Math. 3 (1883), no. 1, 49–92 (French). Les groupes kleinéens. MR 1554613, DOI 10.1007/BF02422441
  • I. R. Porteous, Geometric differentiation, 2nd ed., Cambridge University Press, Cambridge, 2001. For the intelligence of curves and surfaces. MR 1871900
  • J. Sotomayor and C. Gutierrez, Structurally stable configurations of lines of principal curvature, Bifurcation, ergodic theory and applications (Dijon, 1981) Astérisque, vol. 98, Soc. Math. France, Paris, 1982, pp. 195–215. MR 724448
  • J. Sotomayor and C. Gutiérrez, Configurations of lines of principal curvature and their bifurcations, Colloquium on dynamical systems (Guanajuato, 1983) Aportaciones Mat., Soc. Mat. Mexicana, México, 1985, pp. 115–126. MR 823707
  • Jorge Sotomayor and Carlos Gutierrez, Structurally stable configurations of lines of curvature and umbilic points on surfaces, Monografías del Instituto de Matemática y Ciencias Afines [Monographs of the Institute of Mathematics and Related Sciences], vol. 3, Instituto de Matemática y Ciencias Afines, IMCA, Lima; Universidad Nacional de Ingenieria, Instituto de Matemáticas Puras y Aplicadas, Lima, 1998. MR 2007065
  • XiaoPeng Zhang, WuJun Che, and Jean-Claud Paul, Computing lines of curvature for implicit surfaces, Comput. Aided Geom. Design 26 (2009), no. 9, 923–940. MR 2557503, DOI 10.1016/j.cagd.2009.07.004
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 53A05
  • Retrieve articles in all journals with MSC (2010): 53A05
Additional Information
  • John Guckenheimer
  • Affiliation: Mathematics Department, Cornell University, Ithaca, New York 14853
  • MR Author ID: 77930
  • Email: jmg16@cornell.edu
  • Received by editor(s): August 26, 2019
  • Received by editor(s) in revised form: December 19, 2019
  • Published electronically: March 30, 2020
  • Communicated by: Jia-Ping Wang
  • © Copyright 2020 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 148 (2020), 3537-3549
  • MSC (2010): Primary 53A05
  • DOI: https://doi.org/10.1090/proc/14981
  • MathSciNet review: 4108859