A remark on vanishing geodesic distances in infinite dimensions
HTML articles powered by AMS MathViewer
- by Valentino Magnani and Daniele Tiberio
- Proc. Amer. Math. Soc. 148 (2020), 3653-3656
- DOI: https://doi.org/10.1090/proc/14986
- Published electronically: March 4, 2020
- PDF | Request permission
Abstract:
We observe that a vanishing geodesic distance arising from a weak Riemannian metric in a Hilbert manifold can be constructed.References
- R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, tensor analysis, and applications, 2nd ed., Applied Mathematical Sciences, vol. 75, Springer-Verlag, New York, 1988. MR 960687, DOI 10.1007/978-1-4612-1029-0
- Sylvain Arguillère, Sub-Riemannian geometry and geodesics in Banach manifolds, preprint, arXiv:1601.00827, 2016.
- Sylvain Arguillère and Emmanuel Trélat, Sub-Riemannian structures on groups of diffeomorphisms, J. Inst. Math. Jussieu 16 (2017), no. 4, 745–785. MR 3680343, DOI 10.1017/S1474748015000249
- Martin Bauer, Martins Bruveris, and Peter W. Michor, Overview of the geometries of shape spaces and diffeomorphism groups, J. Math. Imaging Vision 50 (2014), no. 1-2, 60–97. MR 3233135, DOI 10.1007/s10851-013-0490-z
- Martin Bauer, Philipp Harms, and Stephen C. Preston, Vanishing distance phenomena and the geometric approach to sqg, preprint, arXiv:1805.04401, 2019.
- Martins Bruveris, Riemannian geometry on manifolds of maps, notes for a short course held at the summer school Mathematics of Shapes at the IMS in Singapore, July 2016, 2016.
- Yakov Eliashberg and Leonid Polterovich, Bi-invariant metrics on the group of Hamiltonian diffeomorphisms, Internat. J. Math. 4 (1993), no. 5, 727–738. MR 1245350, DOI 10.1142/S0129167X93000352
- Ulf Grenander and Michael I. Miller, Computational anatomy: an emerging discipline, Quart. Appl. Math. 56 (1998), no. 4, 617–694. Current and future challenges in the applications of mathematics (Providence, RI, 1997). MR 1668732, DOI 10.1090/qam/1668732
- Erlend Grong, Irina Markina, and Alexander Vasil’ev, Sub-Riemannian geometry on infinite-dimensional manifolds, J. Geom. Anal. 25 (2015), no. 4, 2474–2515. MR 3427135, DOI 10.1007/s12220-014-9523-0
- Robert L. Jerrard and Cy Maor, Geodesic distance for right-invariant metrics on diffeomorphism groups: critical Sobolev exponents, Ann. Global Anal. Geom. 56 (2019), no. 2, 351–360. MR 3995369, DOI 10.1007/s10455-019-09670-z
- Robert L. Jerrard and Cy Maor, Vanishing geodesic distance for right-invariant Sobolev metrics on diffeomorphism groups, Ann. Global Anal. Geom. 55 (2019), no. 4, 631–656. MR 3951750, DOI 10.1007/s10455-018-9644-y
- Wilhelm P. A. Klingenberg, Riemannian geometry, 2nd ed., De Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., Berlin, 1995. MR 1330918, DOI 10.1515/9783110905120
- Serge Lang, Fundamentals of differential geometry, Graduate Texts in Mathematics, vol. 191, Springer-Verlag, New York, 1999. MR 1666820, DOI 10.1007/978-1-4612-0541-8
- Enrico Le Donne, Sean Li, and Terhi Moisala, Gâteaux differentiability on infinite dimensional Carnot groups, preprint, arXiv:1812.07375, 2018.
- Peter W. Michor and David Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms, Doc. Math. 10 (2005), 217–245. MR 2148075
- Peter W. Michor and David Mumford, Riemannian geometries on spaces of plane curves, J. Eur. Math. Soc. (JEMS) 8 (2006), no. 1, 1–48. MR 2201275, DOI 10.4171/JEMS/37
- Valentino Magnani and Tapio Rajala, Radon-Nikodym property and area formula for Banach homogeneous group targets, Int. Math. Res. Not. IMRN 23 (2014), 6399–6430. MR 3286342, DOI 10.1093/imrn/rnt171
Bibliographic Information
- Valentino Magnani
- Affiliation: Dipartimento di Matematica, Università di Pisa, 56127 Pisa, Italy
- MR Author ID: 688183
- Email: valentino.magnani@unipi.it
- Daniele Tiberio
- Affiliation: Dipartimento di Matematica, Università di Pisa, 56127 Pisa, Italy
- Email: danieletiberio@gmail.com
- Received by editor(s): October 23, 2019
- Received by editor(s) in revised form: December 13, 2019
- Published electronically: March 4, 2020
- Additional Notes: The first author was supported by the University of Pisa, Project PRA 2018 49.
- Communicated by: Jeremy Tyson
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 3653-3656
- MSC (2010): Primary 58B20; Secondary 53C22, 53C23
- DOI: https://doi.org/10.1090/proc/14986
- MathSciNet review: 4108868