The Heintze-Karcher inequality for metric measure spaces
HTML articles powered by AMS MathViewer
- by Christian Ketterer
- Proc. Amer. Math. Soc. 148 (2020), 4041-4056
- DOI: https://doi.org/10.1090/proc/15041
- Published electronically: June 4, 2020
- PDF | Request permission
Abstract:
In this note we prove the Heintze-Karcher inequality in the context of essentially non-branching metric measure spaces satisfying a lower Ricci curvature bound in the sense of Lott-Sturm-Villani. The proof is based on the needle decomposition technique for metric measure spaces introduced by Cavalletti-Mondino. Moreover, in the class of $RCD$ spaces with positive curvature the equality case is characterized.References
- Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J. 163 (2014), no. 7, 1405–1490. MR 3205729, DOI 10.1215/00127094-2681605
- Luigi Ambrosio, Andrea Mondino, and Giuseppe Savaré, Nonlinear diffusion equations and curvature conditions in metric measure spaces, Mem. Amer. Math. Soc. 262 (2019), no. 1270, v+121. MR 4044464, DOI 10.1090/memo/1270
- Vincent Bayle, Propriétés de concavité du profil isopérimétrique et applications, PhD thesis, Institut Joseph Fourier, Grenoble, 2004.
- Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001. MR 1835418, DOI 10.1090/gsm/033
- Fabio Cavalletti, Monge problem in metric measure spaces with Riemannian curvature-dimension condition, Nonlinear Anal. 99 (2014), 136–151. MR 3160530, DOI 10.1016/j.na.2013.12.008
- Luis A. Caffarelli, Mikhail Feldman, and Robert J. McCann, Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs, J. Amer. Math. Soc. 15 (2002), no. 1, 1–26. MR 1862796, DOI 10.1090/S0894-0347-01-00376-9
- Fabio Cavalletti and Emanuel Milman, The globalization theorem for the curvature dimension condition, arXiv:1612.07623, 2016.
- Fabio Cavalletti and Andrea Mondino, Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds, Invent. Math. 208 (2017), no. 3, 803–849. MR 3648975, DOI 10.1007/s00222-016-0700-6
- Giné M. Evarist, New formulas for the laplacian of distance functions and applications, arXiv:1803.09687, to appear in Analysis & PDE, 2018.
- Manfredo Perdigão do Carmo, Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty. MR 1138207, DOI 10.1007/978-1-4757-2201-7
- Matthias Erbar, Kazumasa Kuwada, and Karl-Theodor Sturm, On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math. 201 (2015), no. 3, 993–1071. MR 3385639, DOI 10.1007/s00222-014-0563-7
- D. H. Fremlin, Measure theory. Vol. 4, Torres Fremlin, Colchester, 2006. Topological measure spaces. Part I, II; Corrected second printing of the 2003 original. MR 2462372
- Nicola Gigli, On the differential structure of metric measure spaces and applications, Mem. Amer. Math. Soc. 236 (2015), no. 1113, vi+91. MR 3381131, DOI 10.1090/memo/1113
- Ernst Heintze and Hermann Karcher, A general comparison theorem with applications to volume estimates for submanifolds, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 451–470. MR 533065, DOI 10.24033/asens.1354
- Christian Ketterer, Ricci curvature bounds for warped products, J. Funct. Anal. 265 (2013), no. 2, 266–299. MR 3056704, DOI 10.1016/j.jfa.2013.05.008
- Christian Ketterer, Cones over metric measure spaces and the maximal diameter theorem, J. Math. Pures Appl. (9) 103 (2015), no. 5, 1228–1275 (English, with English and French summaries). MR 3333056, DOI 10.1016/j.matpur.2014.10.011
- Vitali Kapovitch and Christian Ketterer, CD meets CAT, https://doi:10.1515/crelle-2019-0021, 2017.
- Bo’az Klartag, Needle decompositions in Riemannian geometry, Mem. Amer. Math. Soc. 249 (2017), no. 1180, v+77. MR 3709716, DOI 10.1090/memo/1180
- John Lott and Cédric Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2) 169 (2009), no. 3, 903–991. MR 2480619, DOI 10.4007/annals.2009.169.903
- Masao Maeda, Volume estimate of submanifolds in compact Riemannian manifolds, J. Math. Soc. Japan 30 (1978), no. 3, 533–551. MR 500722, DOI 10.2969/jmsj/03030533
- Emanuel Milman, Sharp isoperimetric inequalities and model spaces for the curvature-dimension-diameter condition, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 5, 1041–1078. MR 3346688, DOI 10.4171/JEMS/526
- Fernando C. Marques and André Neves, Min-max theory and the Willmore conjecture, Ann. of Math. (2) 179 (2014), no. 2, 683–782. MR 3152944, DOI 10.4007/annals.2014.179.2.6
- Frank Morgan, Manifolds with density, Notices Amer. Math. Soc. 52 (2005), no. 8, 853–858. MR 2161354
- Raquel Perales, Volumes and limits of manifolds with Ricci curvature and mean curvature bounds, Differential Geom. Appl. 48 (2016), 23–37. MR 3534433, DOI 10.1016/j.difgeo.2016.05.004
- Karl-Theodor Sturm, On the geometry of metric measure spaces. II, Acta Math. 196 (2006), no. 1, 133–177. MR 2237207, DOI 10.1007/s11511-006-0003-7
- Cédric Villani, Optimal transport, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, 2009. Old and new. MR 2459454, DOI 10.1007/978-3-540-71050-9
Bibliographic Information
- Christian Ketterer
- Affiliation: Department of Mathematics, University of Toronto, 40 St George Street, Toronto, Ontario M5S 2E4, Canada
- MR Author ID: 1020907
- Email: ckettere@math.toronto.edu
- Received by editor(s): October 2, 2019
- Received by editor(s) in revised form: January 17, 2020, and January 20, 2020
- Published electronically: June 4, 2020
- Additional Notes: The author was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Projektnummer 396662902.
- Communicated by: Guofang Wei
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 4041-4056
- MSC (2010): Primary 53C21, 30L99
- DOI: https://doi.org/10.1090/proc/15041
- MathSciNet review: 4127847