Riccati transformation and nonoscillation criterion for linear difference equations
HTML articles powered by AMS MathViewer
- by Kōdai Fujimoto, Petr Hasil and Michal Veselý PDF
- Proc. Amer. Math. Soc. 148 (2020), 4319-4332 Request permission
Abstract:
We consider a general class of linear difference equations. Using a variation of the discrete Riccati method, we obtain a straightforward nonoscillation criterion for the treated equations. In contrast to a number of known criteria, we do not need to consider any auxiliary sequences. We use the coefficients of the treated equations directly. To illustrate the novelty and the usage of the presented criterion, we provide corollaries and examples.References
- M. H. Abu-Risha, Oscillation of second-order linear difference equations, Appl. Math. Lett. 13 (2000), no. 1, 129–135. MR 1750979, DOI 10.1016/S0893-9659(99)00156-1
- Ravi P. Agarwal, Difference equations and inequalities, 2nd ed., Monographs and Textbooks in Pure and Applied Mathematics, vol. 228, Marcel Dekker, Inc., New York, 2000. Theory, methods, and applications. MR 1740241
- Ravi P. Agarwal, Martin Bohner, Said R. Grace, and Donal O’Regan, Discrete oscillation theory, Hindawi Publishing Corporation, New York, 2005. MR 2179948, DOI 10.1155/9789775945198
- F. V. Atkinson, Discrete and continuous boundary problems, Mathematics in Science and Engineering, Vol. 8, Academic Press, New York-London, 1964. MR 0176141
- Shao Zhu Chen and Lynn H. Erbe, Riccati techniques and discrete oscillations, J. Math. Anal. Appl. 142 (1989), no. 2, 468–487. MR 1014591, DOI 10.1016/0022-247X(89)90015-2
- Shao Zhu Chen, Disconjugacy, disfocality, and oscillation of second order difference equations, J. Differential Equations 107 (1994), no. 2, 383–394. MR 1264528, DOI 10.1006/jdeq.1994.1018
- Ondřej Došlý and Pavel Řehák, Half-linear differential equations, North-Holland Mathematics Studies, vol. 202, Elsevier Science B.V., Amsterdam, 2005. MR 2158903
- Saber Elaydi, An introduction to difference equations, 3rd ed., Undergraduate Texts in Mathematics, Springer, New York, 2005. MR 2128146
- Simona Fišnarová, Oscillatory properties of half-linear difference equations: two-term perturbations, Adv. Difference Equ. , posted on (2012), 2012:101, 16. MR 3078366, DOI 10.1186/1687-1847-2012-101
- S. R. Grace, A. A. Abadeer, and H. A. El-Morshedy, Summation averaging technique for the oscillation of second order linear difference equations, Publ. Math. Debrecen 55 (1999), no. 3-4, 333–347. MR 1721908
- Petr Hasil and Michal Veselý, Critical oscillation constant for difference equations with almost periodic coefficients, Abstr. Appl. Anal. , posted on (2012), Art. ID 471435, 19. MR 2984042, DOI 10.1155/2012/471435
- Petr Hasil and Michal Veselý, Oscillation constants for half-linear difference equations with coefficients having mean values, Adv. Difference Equ. , posted on (2015), 2015:210, 18. MR 3367712, DOI 10.1186/s13662-015-0544-1
- Petr Hasil and Michal Veselý, Oscillation and non-oscillation criteria for linear and half-linear difference equations, J. Math. Anal. Appl. 452 (2017), no. 1, 401–428. MR 3628027, DOI 10.1016/j.jmaa.2017.03.012
- Don B. Hinton and Roger T. Lewis, Spectral analysis of second order difference equations, J. Math. Anal. Appl. 63 (1978), no. 2, 421–438. MR 611455, DOI 10.1016/0022-247X(78)90088-4
- John W. Hooker, A Hille-Wintner type comparison theorem for second order difference equations, Internat. J. Math. Math. Sci. 6 (1983), no. 2, 387–393. MR 701310, DOI 10.1155/S0161171283000332
- John W. Hooker, Man Kam Kwong, and William T. Patula, Oscillatory second order linear difference equations and Riccati equations, SIAM J. Math. Anal. 18 (1987), no. 1, 54–63. MR 871820, DOI 10.1137/0518004
- John W. Hooker and William T. Patula, Riccati type transformations for second-order linear difference equations, J. Math. Anal. Appl. 82 (1981), no. 2, 451–462. MR 629769, DOI 10.1016/0022-247X(81)90208-0
- Walter G. Kelley and Allan C. Peterson, Difference equations, 2nd ed., Harcourt/Academic Press, San Diego, CA, 2001. An introduction with applications. MR 1765695
- Man Kam Kwong, John W. Hooker, and William T. Patula, Riccati type transformations for second-order linear difference equations. II, J. Math. Anal. Appl. 107 (1985), no. 1, 182–196. MR 786022, DOI 10.1016/0022-247X(85)90363-4
- Hassan A. El-Morshedy, Oscillation and nonoscillation criteria for half-linear second order difference equations, Dynam. Systems Appl. 15 (2006), no. 3-4, 429–450. MR 2367656
- P. B. Naĭman, The set of isolated points of increase of the spectral function pertaining to a limit-constant Jacobi matrix, Izv. Vysš. Učebn. Zaved. Matematika 1959 (1959), no. 1 (8), 129–135 (Russian). MR 0131776
- William T. Patula, Growth and oscillation properties of second order linear difference equations, SIAM J. Math. Anal. 10 (1979), no. 1, 55–61. MR 516749, DOI 10.1137/0510006
- Pavel Řehák, Hartman-Wintner type lemma, oscillation, and conjugacy criteria for half-linear difference equations, J. Math. Anal. Appl. 252 (2000), no. 2, 813–827. MR 1800179, DOI 10.1006/jmaa.2000.7124
- P. Řehák, Generalized discrete Riccati equation and oscillation of half-linear difference equations, Math. Comput. Modelling 34 (2001), no. 3-4, 257–269. MR 1835825, DOI 10.1016/S0895-7177(01)00059-0
- Pavel Řehák, Comparison theorems and strong oscillation in the half-linear discrete oscillation theory, Rocky Mountain J. Math. 33 (2003), no. 1, 333–352. MR 1994490, DOI 10.1216/rmjm/1181069996
- Jitsuro Sugie, Nonoscillation theorems for second-order linear difference equations via the Riccati-type transformation, II, Appl. Math. Comput. 304 (2017), 142–152. MR 3612556, DOI 10.1016/j.amc.2017.01.048
- Jitsuro Sugie and Masahiko Tanaka, Nonoscillation of second-order linear equations involving a generalized difference operator, Advances in difference equations and discrete dynamical systems, Springer Proc. Math. Stat., vol. 212, Springer, Singapore, 2017, pp. 241–258. MR 3747637, DOI 10.1007/978-981-10-6409-8_{1}6
- Jitsuro Sugie and Masahiko Tanaka, Nonoscillation theorems for second-order linear difference equations via the Riccati-type transformation, Proc. Amer. Math. Soc. 145 (2017), no. 5, 2059–2073. MR 3611320, DOI 10.1090/proc/13338
- Michal Veselý and Petr Hasil, Oscillation and nonoscillation of asymptotically almost periodic half-linear difference equations, Abstr. Appl. Anal. , posted on (2013), Art. ID 432936, 12. MR 3066297, DOI 10.1155/2013/432936
- Naoto Yamaoka, Oscillation and nonoscillation criteria for second-order nonlinear difference equations of Euler type, Proc. Amer. Math. Soc. 146 (2018), no. 5, 2069–2081. MR 3767358, DOI 10.1090/proc/13888
Additional Information
- Michal Veselý
- Affiliation: Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic; Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic; Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic
- Email: kfujimoto@outlook.com, hasil@mail.muni.cz, michal.vesely@mail.muni.cz
- Received by editor(s): September 24, 2019
- Received by editor(s) in revised form: February 12, 2020
- Published electronically: June 1, 2020
- Additional Notes: This research was supported by Grant GA20-11846S of the Czech Science Foundation.
The third author is the corresponding author. - Communicated by: Mourad Ismail
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 4319-4332
- MSC (2010): Primary 39A06, 39A21; Secondary 39A10, 39A12, 47B39
- DOI: https://doi.org/10.1090/proc/15072
- MathSciNet review: 4135300