Residually free groups do not admit a uniform polynomial isoperimetric function
HTML articles powered by AMS MathViewer
- by Claudio Llosa Isenrich and Romain Tessera
- Proc. Amer. Math. Soc. 148 (2020), 4203-4212
- DOI: https://doi.org/10.1090/proc/15082
- Published electronically: June 1, 2020
- PDF | Request permission
Abstract:
We show that there is no uniform polynomial isoperimetric function for finitely presented subgroups of direct products of free groups by producing a sequence of subgroups $G_r\leq F_2^{(1)} \times \dots \times F_2^{(r)}$ of direct products of 2-generated free groups with Dehn functions bounded below by $n^{r}$. The groups $G_r$ are obtained from the examples of non-coabelian subdirect products of free groups constructed by Bridson, Howie, Miller, and Short. As a consequence we obtain that residually free groups do not admit a uniform polynomial isoperimetric function.References
- Emina Alibegović and Mladen Bestvina, Limit groups are $\rm CAT(0)$, J. London Math. Soc. (2) 74 (2006), no. 1, 259–272. MR 2254564, DOI 10.1112/S0024610706023155
- Gilbert Baumslag, Martin R. Bridson, Charles F. Miller III, and Hamish Short, Finitely presented subgroups of automatic groups and their isoperimetric functions, J. London Math. Soc. (2) 56 (1997), no. 2, 292–304. MR 1489138, DOI 10.1112/S0024610797005395
- G. Baumslag, C. F. Miller III, and H. Short, Isoperimetric inequalities and the homology of groups, Invent. Math. 113 (1993), no. 3, 531–560. MR 1231836, DOI 10.1007/BF01244317
- Gilbert Baumslag, Alexei Myasnikov, and Vladimir Remeslennikov, Algebraic geometry over groups. I. Algebraic sets and ideal theory, J. Algebra 219 (1999), no. 1, 16–79. MR 1707663, DOI 10.1006/jabr.1999.7881
- Robert Bieri, Homological dimension of discrete groups, Queen Mary College Mathematics Notes, Queen Mary College, Mathematics Department, London, 1976. MR 0466344
- Martin R. Bridson, Doubles, finiteness properties of groups, and quadratic isoperimetric inequalities, J. Algebra 214 (1999), no. 2, 652–667. MR 1680601, DOI 10.1006/jabr.1998.7710
- Martin R. Bridson, On the subgroups of semihyperbolic groups, Essays on geometry and related topics, Vol. 1, 2, Monogr. Enseign. Math., vol. 38, Enseignement Math., Geneva, 2001, pp. 85–111. MR 1929323
- Martin R. Bridson, The geometry of the word problem, Invitations to geometry and topology, Oxf. Grad. Texts Math., vol. 7, Oxford Univ. Press, Oxford, 2002, pp. 29–91. MR 1967746
- Martin R. Bridson and Fritz J. Grunewald, Grothendieck’s problems concerning profinite completions and representations of groups, Ann. of Math. (2) 160 (2004), no. 1, 359–373. MR 2119723, DOI 10.4007/annals.2004.160.359
- Martin R. Bridson, James Howie, Charles F. Miller III, and Hamish Short, The subgroups of direct products of surface groups, Geom. Dedicata 92 (2002), 95–103. Dedicated to John Stallings on the occasion of his 65th birthday. MR 1934013, DOI 10.1023/A:1019611419598
- Martin R. Bridson, James Howie, Charles F. Miller III, and Hamish Short, On the finite presentation of subdirect products and the nature of residually free groups, Amer. J. Math. 135 (2013), no. 4, 891–933. MR 3086064, DOI 10.1353/ajm.2013.0036
- Martin R. Bridson and Charles F. Miller III, Structure and finiteness properties of subdirect products of groups, Proc. Lond. Math. Soc. (3) 98 (2009), no. 3, 631–651. MR 2500867, DOI 10.1112/plms/pdn039
- José Burillo and Jennifer Taback, Equivalence of geometric and combinatorial Dehn functions, New York J. Math. 8 (2002), 169–179. MR 1934388
- William Carter and Max Forester, The Dehn functions of Stallings-Bieri groups, Math. Ann. 368 (2017), no. 1-2, 671–683. MR 3651586, DOI 10.1007/s00208-016-1470-6
- Will Dison, An isoperimetric function for Bestvina-Brady groups, Bull. Lond. Math. Soc. 40 (2008), no. 3, 384–394. MR 2418794, DOI 10.1112/blms/bdn019
- Will Dison, Isoperimetric functions for subdirect products and Bestvina-Brady groups, Ph.D. thesis, Imperial College London, 2008.
- Will Dison, A subgroup of a direct product of free groups whose Dehn function has a cubic lower bound, J. Group Theory 12 (2009), no. 5, 783–793. MR 2554769, DOI 10.1515/JGT.2009.012
- Will Dison, Murray Elder, Timothy R. Riley, and Robert Young, The Dehn function of Stallings’ group, Geom. Funct. Anal. 19 (2009), no. 2, 406–422. MR 2545243, DOI 10.1007/s00039-009-0011-9
- Steve M. Gersten, Isoperimetric and isodiametric functions of finite presentations, Geometric group theory, Vol. 1 (Sussex, 1991) London Math. Soc. Lecture Note Ser., vol. 181, Cambridge Univ. Press, Cambridge, 1993, pp. 79–96. MR 1238517, DOI 10.1017/CBO9780511661860.008
- S. M. Gersten, Finiteness properties of asynchronously automatic groups, Geometric group theory (Columbus, OH, 1992) Ohio State Univ. Math. Res. Inst. Publ., vol. 3, de Gruyter, Berlin, 1995, pp. 121–133. MR 1355107
- S. M. Gersten, D. F. Holt, and T. R. Riley, Isoperimetric inequalities for nilpotent groups, Geom. Funct. Anal. 13 (2003), no. 4, 795–814. MR 2006557, DOI 10.1007/s00039-003-0430-y
- Dessislava H. Kochloukova, On subdirect products of type $\textrm {FP}_m$ of limit groups, J. Group Theory 13 (2010), no. 1, 1–19. MR 2604842, DOI 10.1515/JGT.2009.028
- Benno Kuckuck, Subdirect products of groups and the $n$-$(n+1)$-$(n+2)$ conjecture, Q. J. Math. 65 (2014), no. 4, 1293–1318. MR 3285772, DOI 10.1093/qmath/hau004
- C. Llosa Isenrich and R. Tessera, On the Dehn functions of Kähler groups, arXiv:1807.03677 (2018), to appear in Groups, Geometry, and Dynamics.
- John Stallings, A finitely presented group whose 3-dimensional integral homology is not finitely generated, Amer. J. Math. 85 (1963), 541–543. MR 158917, DOI 10.2307/2373106
Bibliographic Information
- Claudio Llosa Isenrich
- Affiliation: Universität Wien, Fakultät für Mathematik, Oskar-Morgenstern-Platz 1, 1090 Wien, Österreich
- MR Author ID: 1203180
- ORCID: 0000-0001-9480-0372
- Email: claudio.llosa.isenrich@univie.ac.at
- Romain Tessera
- Affiliation: Institut de Mathématiques de Jussieu-PRG, Université Paris-Diderot, CNRS, Case 7012, 75205 Paris Cedex 13, France
- MR Author ID: 800491
- Email: romatessera@gmail.com
- Received by editor(s): November 26, 2019
- Received by editor(s) in revised form: February 18, 2020
- Published electronically: June 1, 2020
- Additional Notes: The first author was supported by a public grant as part of the FMJH, by the Max Planck Institute for Mathematics, and by the Austrian Science Fund (FWF): M2811-N
The second author was supported by the grant ANR-14-CE25-0004 “GAMME” - Communicated by: David Futer
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 4203-4212
- MSC (2010): Primary 20F65; Secondary 20F05, 20F69
- DOI: https://doi.org/10.1090/proc/15082
- MathSciNet review: 4135289