A differential-algebraic criterion for obtaining a small Cohen-Macaulay module
HTML articles powered by AMS MathViewer
- by Hans Schoutens
- Proc. Amer. Math. Soc. 148 (2020), 4165-4177
- DOI: https://doi.org/10.1090/proc/15084
- Published electronically: June 30, 2020
- PDF | Request permission
Abstract:
We show how for a three-dimensional complete local ring in positive characteristic, the existence of an F-invariant, differentiable derivation implies Hochster’s small CM-module conjecture. As an application we show that any three-dimensional pseudo-graded ring in positive characteristic admits a small CM-module.References
- Yves André, La conjecture du facteur direct, Publ. Math. Inst. Hautes Études Sci. 127 (2018), 71–93 (French, with French summary). MR 3814651, DOI 10.1007/s10240-017-0097-9
- Yves André, Singularities in mixed characteristic. The perfectoid approach, Jpn. J. Math. 14 (2019), no. 2, 231–247.
- Yôichi Aoyama, Some basic results on canonical modules, J. Math. Kyoto Univ. 23 (1983), no. 1, 85–94. MR 692731, DOI 10.1215/kjm/1250521612
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- David Eisenbud and Bernd Sturmfels, Binomial ideals, Duke Math. J. 84 (1996), no. 1, 1–45. MR 1394747, DOI 10.1215/S0012-7094-96-08401-X
- M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318–337. MR 304376, DOI 10.2307/1970791
- M. Hochester, Current state of the homological conjectures, Tech. report, University of Utah, http://www.math.utah.edu/vigre/minicourses/algebra/hochster.pdf, 2004.
- Melvin Hochster, Homological conjectures and lim Cohen-Macaulay sequences, Homological and computational methods in commutative algebra, Springer INdAM Ser., vol. 20, Springer, Cham, 2017, pp. 173–197. MR 3751886
- Melvin Hochster and Craig Huneke, Infinite integral extensions and big Cohen-Macaulay algebras, Ann. of Math. (2) 135 (1992), no. 1, 53–89. MR 1147957, DOI 10.2307/2946563
- Melvin Hochster and Craig Huneke, Indecomposable canonical modules and connectedness, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 197–208. MR 1266184, DOI 10.1090/conm/159/01509
- T. Y. Lam, A first course in noncommutative rings, Graduate Texts in Mathematics, vol. 131, Springer-Verlag, New York, 1991. MR 1125071, DOI 10.1007/978-1-4684-0406-7
- Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
- Hans Schoutens, Canonical big Cohen-Macaulay algebras and rational singularities, Illinois J. Math. 48 (2004), no. 1, 131–150. MR 2048219
- Hans Schoutens, Classifying singularities up to analytic extensions of scalars is smooth, Ann. Pure Appl. Logic 162 (2011), no. 10, 836–852. MR 2803951, DOI 10.1016/j.apal.2011.02.005
- Hans Schoutens, Hochster’s small MCM conjecture for three-dimensional weakly F-split rings, Comm. Algebra 45 (2017), no. 1, 262–274. MR 3556570, DOI 10.1080/00927872.2016.1206342
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
- Amnon Yekutieli, An explicit construction of the Grothendieck residue complex, Astérisque 208 (1992), 127 (English, with French summary). With an appendix by Pramathanath Sastry. MR 1213064
Bibliographic Information
- Hans Schoutens
- Affiliation: Department of Mathematics, NYC College of Technology and the CUNY Graduate Center, New York, New York 11201
- MR Author ID: 249272
- Received by editor(s): November 12, 2019
- Received by editor(s) in revised form: December 3, 2019, and February 13, 2020
- Published electronically: June 30, 2020
- Communicated by: Claudia Polini
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 4165-4177
- MSC (2010): Primary 13D22, 13D45, 13A35
- DOI: https://doi.org/10.1090/proc/15084
- MathSciNet review: 4135286