## A note on pseudoconvex hypersurfaces of infinite type in $\mathbb C^n$

HTML articles powered by AMS MathViewer

- by John Erik Fornæss and Ninh Van Thu PDF
- Proc. Amer. Math. Soc.
**148**(2020), 4435-4444 Request permission

## Abstract:

The purpose of this article is to prove that there exists a real smooth pseudoconvex hypersurface germ $(M,p)$ of D’Angelo infinite type in $\mathbb {C}^{n+1}$ such that it does not admit any (singular) holomorphic curve in $\mathbb {C}^{n+1}$ tangent to $M$ at $p$ to infinite order.## References

- Thomas Bloom and Ian Graham,
*A geometric characterization of points of type $m$ on real submanifolds of $\textbf {C}^{n}$*, J. Differential Geometry**12**(1977), no. 2, 171–182. MR**492369** - David Catlin,
*Necessary conditions for subellipticity of the $\bar \partial$-Neumann problem*, Ann. of Math. (2)**117**(1983), no. 1, 147–171. MR**683805**, DOI 10.2307/2006974 - David Catlin,
*Boundary invariants of pseudoconvex domains*, Ann. of Math. (2)**120**(1984), no. 3, 529–586. MR**769163**, DOI 10.2307/1971087 - David Catlin,
*Subelliptic estimates for the $\overline \partial$-Neumann problem on pseudoconvex domains*, Ann. of Math. (2)**126**(1987), no. 1, 131–191. MR**898054**, DOI 10.2307/1971347 - John P. D’Angelo,
*Real hypersurfaces, orders of contact, and applications*, Ann. of Math. (2)**115**(1982), no. 3, 615–637. MR**657241**, DOI 10.2307/2007015 - John P. D’Angelo,
*Several complex variables and the geometry of real hypersurfaces*, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1993. MR**1224231** - John P. D’Angelo and Joseph J. Kohn,
*Subelliptic estimates and finite type*, Several complex variables (Berkeley, CA, 1995–1996) Math. Sci. Res. Inst. Publ., vol. 37, Cambridge Univ. Press, Cambridge, 1999, pp. 199–232. MR**1748604** - John Erik Fornæss and Berit Stensønes,
*Infinite type germs of real analytic pseudoconvex domains in $\Bbb C^3$*, Complex Var. Elliptic Equ.**57**(2012), no. 6, 705–717. MR**2916829**, DOI 10.1080/17476933.2010.534144 - John Erik Fornæss, Lina Lee, and Yuan Zhang,
*Formal complex curves in real smooth hypersurfaces*, Illinois J. Math.**58**(2014), no. 1, 1–10. MR**3331838** - Kang-Tae Kim and Ninh Van Thu,
*On the tangential holomorphic vector fields vanishing at an infinite type point*, Trans. Amer. Math. Soc.**367**(2015), no. 2, 867–885. MR**3280030**, DOI 10.1090/S0002-9947-2014-05917-5 - Martin Kolář,
*Normal forms for hypersurfaces of finite type in ${\Bbb C}^2$*, Math. Res. Lett.**12**(2005), no. 5-6, 897–910. MR**2189248**, DOI 10.4310/MRL.2005.v12.n6.a10 - László Lempert,
*On the boundary behavior of holomorphic mappings*, Contributions to several complex variables, Aspects Math., E9, Friedr. Vieweg, Braunschweig, 1986, pp. 193–215. MR**859198** - T. K. S. Nguyen and V. T. Chu,
*A note on infinite type germs of a real hypersurface in $\mathbb {C}^2$*, VNU Journal of Science: Mathematics–Physics**35**(2019), no. 2, 82–87.

## Additional Information

**John Erik Fornæss**- Affiliation: Department of Mathematics, NTNU, Sentralbygg 2, Alfred Getz vei 1, 7491 Trondheim, Norway
- MR Author ID: 68145
- Email: john.fornass@ntnu.no
**Ninh Van Thu**- Affiliation: Department of Mathematics, VNU University of Science, Vietnam National University at Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam; Thang Long Institute of Mathematics and Applied Sciences, Nghiem Xuan Yem, Hoang Mai, Hanoi, Vietnam
- MR Author ID: 853151
- Email: thunv@vnu.edu.vn
- Received by editor(s): October 28, 2019
- Received by editor(s) in revised form: March 5, 2020
- Published electronically: July 20, 2020
- Additional Notes: The second author was supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 101.02-2017.311.
- Communicated by: Harold Boas
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**148**(2020), 4435-4444 - MSC (2010): Primary 32T25; Secondary 32C25
- DOI: https://doi.org/10.1090/proc/15088
- MathSciNet review: 4135308