Operator algebras of higher rank numerical semigroups
HTML articles powered by AMS MathViewer
- by Evgenios T.A. Kakariadis, Elias G. Katsoulis and Xin Li
- Proc. Amer. Math. Soc. 148 (2020), 4423-4433
- DOI: https://doi.org/10.1090/proc/15096
- Published electronically: July 20, 2020
- PDF | Request permission
Abstract:
A higher rank numerical semigroup is a positive cone whose seminormalization is isomorphic to the free abelian semigroup. The corresponding nonselfadjoint semigroup algebras are known to provide examples that answer Arveson’s Dilation Problem in the negative. Here we show that these algebras share the polydisc as the character space in a canonical way. We subsequently use this feature in order to identify higher rank numerical semigroups from the corresponding nonselfadjoint algebras.References
- William B. Arveson, Operator algebras and measure preserving automorphisms, Acta Math. 118 (1967), 95–109. MR 210866, DOI 10.1007/BF02392478
- L. A. Coburn, The $C^{\ast }$-algebra generated by an isometry, Bull. Amer. Math. Soc. 73 (1967), 722–726. MR 213906, DOI 10.1090/S0002-9904-1967-11845-7
- G. Cortiñas, C. Haesemeyer, Mark E. Walker, and C. Weibel, The $K$-theory of toric varieties in positive characteristic, J. Topol. 7 (2014), no. 1, 247–286. MR 3180619, DOI 10.1112/jtopol/jtt026
- John Crisp and Marcelo Laca, On the Toeplitz algebras of right-angled and finite-type Artin groups, J. Aust. Math. Soc. 72 (2002), no. 2, 223–245. MR 1887134, DOI 10.1017/S1446788700003876
- John Crisp and Marcelo Laca, Boundary quotients and ideals of Toeplitz $C^*$-algebras of Artin groups, J. Funct. Anal. 242 (2007), no. 1, 127–156. MR 2274018, DOI 10.1016/j.jfa.2006.08.001
- Joachim Cuntz, Christopher Deninger, and Marcelo Laca, $C^*$-algebras of Toeplitz type associated with algebraic number fields, Math. Ann. 355 (2013), no. 4, 1383–1423. MR 3037019, DOI 10.1007/s00208-012-0826-9
- Joachim Cuntz, Siegfried Echterhoff, and Xin Li, On the K-theory of the C*-algebra generated by the left regular representation of an Ore semigroup, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 3, 645–687. MR 3323201, DOI 10.4171/JEMS/513
- Joachim Cuntz, Siegfried Echterhoff, and Xin Li, On the $K$-theory of crossed products by automorphic semigroup actions, Q. J. Math. 64 (2013), no. 3, 747–784. MR 3094498, DOI 10.1093/qmath/hat021
- Joachim Cuntz, Siegfried Echterhoff, Xin Li, and Guoliang Yu, $K$-theory for group $C^*$-algebras and semigroup $C^*$-algebras, Oberwolfach Seminars, vol. 47, Birkhäuser/Springer, Cham, 2017. MR 3618901
- Kenneth R. Davidson, Adam H. Fuller, and Evgenios T. A. Kakariadis, Semicrossed products of operator algebras by semigroups, Mem. Amer. Math. Soc. 247 (2017), no. 1168, v+97. MR 3633288, DOI 10.1090/memo/1168
- Kenneth R. Davidson, Adam H. Fuller, and Evgenios T. A. Kakariadis, Semicrossed products of operator algebras: a survey, New York J. Math. 24A (2018), 56–86. MR 3904871
- Kenneth R. Davidson and Elias G. Katsoulis, Nonself-adjoint operator algebras for dynamical systems, Operator structures and dynamical systems, Contemp. Math., vol. 503, Amer. Math. Soc., Providence, RI, 2009, pp. 39–51. MR 2590615, DOI 10.1090/conm/503/09892
- Kenneth R. Davidson, Christopher Ramsey, and Orr Moshe Shalit, The isomorphism problem for some universal operator algebras, Adv. Math. 228 (2011), no. 1, 167–218. MR 2822231, DOI 10.1016/j.aim.2011.05.015
- R. G. Douglas, On the $C^{\ast }$-algebra of a one-parameter semigroup of isometries, Acta Math. 128 (1972), no. 3-4, 143–151. MR 394296, DOI 10.1007/BF02392163
- Michael A. Dritschel and Scott A. McCullough, Boundary representations for families of representations of operator algebras and spaces, J. Operator Theory 53 (2005), no. 1, 159–167. MR 2132691
- Michael A. Dritschel, Michael T. Jury, and Scott McCullough, Dilations and constrained algebras, Oper. Matrices 10 (2016), no. 4, 829–861. MR 3584680, DOI 10.7153/oam-10-48
- Benton L. Duncan and Justin R. Peters, Operator algebras and representations from commuting semigroup actions, J. Operator Theory 74 (2015), no. 1, 23–43. MR 3383612, DOI 10.7900/jot.2014apr16.2027
- S. A. Grigoryan and T. V. Tonev, Shift-invariant uniform algebras on groups, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)], vol. 68, Birkhäuser Verlag, Basel, 2006. MR 2239563
- E. G. Katsoulis, Non-selfadjoint operator algebras: dynamics, classification and $\rm C^*$-envelopes, Recent advances in operator theory and operator algebras, CRC Press, Boca Raton, FL, 2018, pp. 27–81. MR 3699240
- Boyu Li, Regular representations of lattice ordered semigroups, J. Operator Theory 76 (2016), no. 1, 33–56. MR 3527979, DOI 10.7900/jot.2015jul03.2094
- X. Li, T. Omland, and J. Spielberg, C*-algebras of right LCM one-relator monoids and Artin-Tits monoids of finite type, Comm. Math. Phys., to appear.
- G. J. Murphy, Ordered groups and Toeplitz algebras, J. Operator Theory 18 (1987), no. 2, 303–326. MR 915512
- Vern Paulsen, Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics, vol. 78, Cambridge University Press, Cambridge, 2002. MR 1976867
- Justin Peters, Semicrossed products of $C^\ast$-algebras, J. Funct. Anal. 59 (1984), no. 3, 498–534. MR 769379, DOI 10.1016/0022-1236(84)90063-6
- R. Michael Range, Holomorphic functions and integral representations in several complex variables, Graduate Texts in Mathematics, vol. 108, Springer-Verlag, New York, 1986. MR 847923, DOI 10.1007/978-1-4757-1918-5
- B. V. Shabat, Introduction to complex analysis. Part II, Translations of Mathematical Monographs, vol. 110, American Mathematical Society, Providence, RI, 1992. Functions of several variables; Translated from the third (1985) Russian edition by J. S. Joel. MR 1192135, DOI 10.1090/mmono/110
- Allan M. Sinclair, Homomorphisms from $C_{0}(R)$, J. London Math. Soc. (2) 11 (1975), no. 2, 165–174. MR 377517, DOI 10.1112/jlms/s2-11.2.165
Bibliographic Information
- Evgenios T.A. Kakariadis
- Affiliation: School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
- MR Author ID: 967408
- ORCID: 0000-0003-3053-070X
- Email: evgenios.kakariadis@ncl.ac.uk
- Elias G. Katsoulis
- Affiliation: Department of Mathematics, East Carolina University, Greenville, North Carolina 27858
- MR Author ID: 99165
- Email: katsoulise@ecu.edu
- Xin Li
- Affiliation: School of Mathematics and Statistics, University of Glasgow, University Place, Glasgow, G12 8QQ, United Kingdom
- MR Author ID: 911893
- ORCID: 0000-0002-2243-3742
- Email: xin.li@glasgow.ac.uk
- Received by editor(s): March 25, 2019
- Received by editor(s) in revised form: February 25, 2020
- Published electronically: July 20, 2020
- Communicated by: Adrian Ioana
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 4423-4433
- MSC (2020): Primary 47L25, 46L07
- DOI: https://doi.org/10.1090/proc/15096
- MathSciNet review: 4135307