The Dirichlet problem for nonlocal elliptic operators with $C^{0,\alpha }$ exterior data
HTML articles powered by AMS MathViewer
- by Alessandro Audrito and Xavier Ros-Oton PDF
- Proc. Amer. Math. Soc. 148 (2020), 4455-4470 Request permission
Abstract:
In this note we study the boundary regularity of solutions to nonlocal Dirichlet problems of the form $Lu=0$ in $\Omega$, $u=g$ in $\mathbb R^N\setminus \Omega$, in non-smooth domains $\Omega$. When $g$ is smooth enough, then it is easy to transform this problem into an homogeneous Dirichlet problem with a bounded right-hand side for which the boundary regularity is well understood. Here, we study the case in which $g\in C^{0,\alpha }$, and establish the optimal Hölder regularity of $u$ up to the boundary. Our results extend previous results of Grubb for $C^\infty$ domains $\Omega$.References
- Guy Barles and Cyril Imbert, Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited, Ann. Inst. H. Poincaré C Anal. Non Linéaire 25 (2008), no. 3, 567–585. MR 2422079, DOI 10.1016/j.anihpc.2007.02.007
- R. M. Blumenthal, R. K. Getoor, and D. B. Ray, On the distribution of first hits for the symmetric stable processes, Trans. Amer. Math. Soc. 99 (1961), 540–554. MR 126885, DOI 10.1090/S0002-9947-1961-0126885-4
- Krzysztof Bogdan, The boundary Harnack principle for the fractional Laplacian, Studia Math. 123 (1997), no. 1, 43–80. MR 1438304, DOI 10.4064/sm-123-1-43-80
- Krzysztof Bogdan, Tomasz Grzywny, and MichałRyznar, Barriers, exit time and survival probability for unimodal Lévy processes, Probab. Theory Related Fields 162 (2015), no. 1-2, 155–198. MR 3350043, DOI 10.1007/s00440-014-0568-6
- Krzysztof Bogdan, Takashi Kumagai, and Mateusz Kwaśnicki, Boundary Harnack inequality for Markov processes with jumps, Trans. Amer. Math. Soc. 367 (2015), no. 1, 477–517. MR 3271268, DOI 10.1090/S0002-9947-2014-06127-8
- Luis Caffarelli and Luis Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math. 62 (2009), no. 5, 597–638. MR 2494809, DOI 10.1002/cpa.20274
- Luis Caffarelli and Luis Silvestre, The Evans-Krylov theorem for nonlocal fully nonlinear equations, Ann. of Math. (2) 174 (2011), no. 2, 1163–1187. MR 2831115, DOI 10.4007/annals.2011.174.2.9
- Serena Dipierro, Nicola Soave, and Enrico Valdinoci, On fractional elliptic equations in Lipschitz sets and epigraphs: regularity, monotonicity and rigidity results, Math. Ann. 369 (2017), no. 3-4, 1283–1326. MR 3713542, DOI 10.1007/s00208-016-1487-x
- Matthieu Felsinger, Moritz Kassmann, and Paul Voigt, The Dirichlet problem for nonlocal operators, Math. Z. 279 (2015), no. 3-4, 779–809. MR 3318251, DOI 10.1007/s00209-014-1394-3
- D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag Berlin Heidelberg, 1998.
- Gerd Grubb, Local and nonlocal boundary conditions for $\mu$-transmission and fractional elliptic pseudodifferential operators, Anal. PDE 7 (2014), no. 7, 1649–1682. MR 3293447, DOI 10.2140/apde.2014.7.1649
- Carlos E. Kenig, Harmonic analysis techniques for second order elliptic boundary value problems, CBMS Regional Conference Series in Mathematics, vol. 83, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1994. MR 1282720, DOI 10.1090/cbms/083
- Gary M. Lieberman, Regularized distance and its applications, Pacific J. Math. 117 (1985), no. 2, 329–352. MR 779924
- Chenchen Mou, Perron’s method for nonlocal fully nonlinear equations, Anal. PDE 10 (2017), no. 5, 1227–1254. MR 3668590, DOI 10.2140/apde.2017.10.1227
- Xavier Ros-Oton, Nonlocal elliptic equations in bounded domains: a survey, Publ. Mat. 60 (2016), no. 1, 3–26. MR 3447732
- Xavier Ros-Oton and Joaquim Serra, Boundary regularity for fully nonlinear integro-differential equations, Duke Math. J. 165 (2016), no. 11, 2079–2154. MR 3536990, DOI 10.1215/00127094-3476700
- Xavier Ros-Oton and Joaquim Serra, Regularity theory for general stable operators, J. Differential Equations 260 (2016), no. 12, 8675–8715. MR 3482695, DOI 10.1016/j.jde.2016.02.033
- Xavier Ros-Oton and Joaquim Serra, Boundary regularity estimates for nonlocal elliptic equations in $C^1$ and $C^{1,\alpha }$ domains, Ann. Mat. Pura Appl. (4) 196 (2017), no. 5, 1637–1668. MR 3694738, DOI 10.1007/s10231-016-0632-1
- Xavier Ros-Oton and Joaquim Serra, The boundary Harnack principle for nonlocal elliptic operators in non-divergence form, Potential Anal. 51 (2019), no. 3, 315–331. MR 4023466, DOI 10.1007/s11118-018-9713-7
Additional Information
- Alessandro Audrito
- Affiliation: Institute of Mathematics DISMA, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy; and Department of Mathematics, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- MR Author ID: 1210008
- Email: alessandro.audrito@polito.it, alessandro.audrito@math.uzh.ch
- Xavier Ros-Oton
- Affiliation: Institute of Mathematics, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland; and ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain; and Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain
- MR Author ID: 920237
- Email: xavier.ros-oton@math.uzh.ch
- Received by editor(s): October 21, 2019
- Received by editor(s) in revised form: March 13, 2020
- Published electronically: July 20, 2020
- Additional Notes: The first author was supported by PRIN 2015 (MIUR, Italy), and by the GNAMPA projects “Esistenza e proprietà qualitative per soluzioni di EDP non lineari ellittiche e paraboliche” and “Ottimizzazione Geometrica e Spettrale” (Italy).
The second author was supported by the European Research Council under the Grant Agreement No. 801867 “Regularity and singularities in elliptic PDE (EllipticPDE)”, by the Swiss National Science Foundation, and by MINECO grant MTM2017-84214-C2-1-P - Communicated by: Ryan Hynd
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 4455-4470
- MSC (2010): Primary 35B65; Secondary 47G20
- DOI: https://doi.org/10.1090/proc/15121
- MathSciNet review: 4135310