Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On two-spectra inverse problems
HTML articles powered by AMS MathViewer

by Namig J. Guliyev
Proc. Amer. Math. Soc. 148 (2020), 4491-4502
DOI: https://doi.org/10.1090/proc/15155
Published electronically: July 20, 2020

Abstract:

We consider a two-spectra inverse problem for the one-dimensional Schrödinger equation with boundary conditions containing rational Herglotz–Nevanlinna functions of the eigenvalue parameter and provide a complete solution of this problem.
References
  • R. Kh. Amirov, A. S. Ozkan, and B. Keskin, Inverse problems for impulsive Sturm-Liouville operator with spectral parameter linearly contained in boundary conditions, Integral Transforms Spec. Funct. 20 (2009), no. 7-8, 607–618. MR 2543768, DOI 10.1080/10652460902726443
  • Agnes Ilona Benedek and Rafael Panzone, On inverse eigenvalue problems for a second-order differential equation with parameter contained in the boundary conditions, Notas de Álgebra y Análisis [Notes on Algebra and Analysis], vol. 9, Universidad Nacional del Sur, Instituto de Matemática, Bahía Blanca, 1980. MR 608412
  • Paul A. Binding, Patrick J. Browne, and Bruce A. Watson, Equivalence of inverse Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter, J. Math. Anal. Appl. 291 (2004), no. 1, 246–261. MR 2034071, DOI 10.1016/j.jmaa.2003.11.025
  • Göran Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte, Acta Math. 78 (1946), 1–96 (German). MR 15185, DOI 10.1007/BF02421600
  • M. V. Chugunova, Inverse spectral problem for the Sturm-Liouville operator with eigenvalue parameter dependent boundary conditions, Operator theory, system theory and related topics (Beer-Sheva/Rehovot, 1997) Oper. Theory Adv. Appl., vol. 123, Birkhäuser, Basel, 2001, pp. 187–194. MR 1821912
  • Jonathan Eckhardt, Fritz Gesztesy, Roger Nichols, and Gerald Teschl, Inverse spectral theory for Sturm-Liouville operators with distributional potentials, J. Lond. Math. Soc. (2) 88 (2013), no. 3, 801–828. MR 3145132, DOI 10.1112/jlms/jdt041
  • Namig J. Guliyev, Inverse eigenvalue problems for Sturm-Liouville equations with spectral parameter linearly contained in one of the boundary conditions, Inverse Problems 21 (2005), no. 4, 1315–1330. MR 2158111, DOI 10.1088/0266-5611/21/4/008
  • Namig J. Guliyev, A uniqueness theorem for Sturm-Liouville equations with a spectral parameter linearly contained in the boundary conditions, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 25 (2006), 35–40. MR 2332927
  • Namig J. Guliyev, Essentially isospectral transformations and their applications, Ann. Mat. Pura Appl. (4) 199 (2020), no. 4, 1621–1648. MR 4117511, DOI 10.1007/s10231-019-00934-w
  • Namig J. Guliyev, Schrödinger operators with distributional potentials and boundary conditions dependent on the eigenvalue parameter, J. Math. Phys. 60 (2019), no. 6, 063501, 23. MR 3959138, DOI 10.1063/1.5048692
  • Namig J. Guliyev, On extensions of symmetric operators, Oper. Matrices 14 (2020), no. 1, 71–75. MR 4080923, DOI 10.7153/oam-2020-14-05
  • Namig J. Guliyev, Inverse square singularities and eigenparameter dependent boundary conditions are two sides of the same coin, submitted. arXiv:2001.00061, 2020.
  • I. M. Guseĭnov and I. M. Nabiev, Solution of a class of inverse Sturm-Liouville boundary value problems, Mat. Sb. 186 (1995), no. 5, 35–48 (Russian, with Russian summary); English transl., Sb. Math. 186 (1995), no. 5, 661–674. MR 1341083, DOI 10.1070/SM1995v186n05ABEH000035
  • Rostyslav O. Hryniv and Yaroslav V. Mykytyuk, Inverse spectral problems for Sturm-Liouville operators with singular potentials. II. Reconstruction by two spectra, Functional analysis and its applications, North-Holland Math. Stud., vol. 197, Elsevier Sci. B. V., Amsterdam, 2004, pp. 97–114. MR 2098874, DOI 10.1016/S0304-0208(04)80159-2
  • Ch. G. Ibadzade and I. M. Nabiev, Reconstruction of the Sturm-Liouville operator with nonseparated boundary conditions and the with a spectral parameter in the boundary condition, Ukraïn. Mat. Zh. 69 (2017), no. 9, 1217–1223 (Russian, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 69 (2018), no. 9, 1416–1423. MR 3722475, DOI 10.1007/s11253-018-1440-0
  • M. G. Kreĭn, Solution of the inverse Sturm-Liouville problem, Doklady Akad. Nauk SSSR (N.S.) 76 (1951), 21–24 (Russian). MR 0039895
  • N. Dzh. Kuliev, Inverse problems for the Sturm-Liouville equation with a spectral parameter in the boundary condition, Dokl. Nats. Akad. Nauk Azerb. 60 (2004), no. 3-4, 10–16 (Russian, with English and Azerbaijani summaries). MR 2187447
  • B. M. Levitan, Determination of a Sturm-Liouville differential equation in terms of two spectra, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 63–78 (Russian). MR 0159980
  • B. M. Levitan and M. G. Gasymov, Determination of a differential equation by two spectra, Uspehi Mat. Nauk 19 (1964), no. 2 (116), 3–63 (Russian). MR 0162996
  • S. G. Mamedov, Determination of a second-order differential equation from two spectra with a spectral parameter entering into the boundary conditions, Izv. Akad. Nauk Azerbaĭdzhan. SSR Ser. Fiz.-Tekhn. Mat. Nauk 3 (1982), no. 2, 15–22 (Russian, with English and Azerbaijani summaries). MR 687581
  • V. A. Marčenko, Some questions of the theory of one-dimensional linear differential operators of the second order. I, Trudy Moskov. Mat. Obšč. 1 (1952), 327–420 (Russian). MR 0058064
  • V. A. Marchenko, Operatory Shturma-Liuvillya i ikh prilozheniya, Izdat. “Naukova Dumka”, Kiev, 1977 (Russian). MR 0481179
  • V. A. Marčenko and I. V. Ostrovs′kiĭ, A characterization of the spectrum of the Hill operator, Mat. Sb. (N.S.) 97(139) (1975), no. 4(8), 540–606, 633–634 (Russian). MR 0409965
  • A. M. Savchuk and A. A. Shkalikov, Inverse problem for Sturm-Liouville operators with distribution potentials: reconstruction from two spectra, Russ. J. Math. Phys. 12 (2005), no. 4, 507–514. MR 2201315
Similar Articles
Bibliographic Information
  • Namig J. Guliyev
  • Affiliation: Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, 9 B. Vahabzadeh str., AZ1141, Baku, Azerbaijan
  • MR Author ID: 286202
  • ORCID: 0000-0002-5633-6748
  • Email: njguliyev@gmail.com
  • Received by editor(s): December 16, 2019
  • Received by editor(s) in revised form: April 12, 2020
  • Published electronically: July 20, 2020
  • Communicated by: Tanya Christiansen
  • © Copyright 2020 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 148 (2020), 4491-4502
  • MSC (2010): Primary 34A55, 34B07, 34L40; Secondary 34B24, 47A75, 47E05
  • DOI: https://doi.org/10.1090/proc/15155
  • MathSciNet review: 4135313