On nonseparable growths of $\omega$ supporting measures
HTML articles powered by AMS MathViewer
- by Piotr Borodulin-Nadzieja and Tomasz Żuchowski
- Proc. Amer. Math. Soc. 148 (2020), 4983-4995
- DOI: https://doi.org/10.1090/proc/13804
- Published electronically: July 30, 2020
- PDF | Request permission
Abstract:
We present several $\mathsf {ZFC}$ examples of compactifications $\gamma \omega$ of $\omega$ such that their remainders $\gamma \omega \backslash \omega$ are nonseparable and carry strictly positive measures.References
- Murray G. Bell, Compact ccc nonseparable spaces of small weight, Topology Proc. 5 (1980), 11–25 (1981). MR 624458
- Piotr Borodulin-Nadzieja and Tanmay Inamdar, Measures and slaloms, Fund. Math. 239 (2017), no. 2, 149–176. MR 3681585, DOI 10.4064/fm318-10-2016
- R. Creighton Buck, Generalized asymptotic density, Amer. J. Math. 75 (1953), 335–346. MR 54000, DOI 10.2307/2372456
- Alan Dow and Klaas Pieter Hart, The measure algebra does not always embed, Fund. Math. 163 (2000), no. 2, 163–176. MR 1752102, DOI 10.4064/fm-163-2-163-176
- Mirna D amonja and Grzegorz Plebanek, Strictly positive measures on Boolean algebras, J. Symbolic Logic 73 (2008), no. 4, 1416–1432. MR 2467227, DOI 10.2178/jsl/1230396929
- Piotr Drygier and Grzegorz Plebanek, Nonseparable growth of the integers supporting a measure, Topology Appl. 191 (2015), 58–64. MR 3361054, DOI 10.1016/j.topol.2015.05.051
- Alan Dow and Juris Steprāns, The $\sigma$-linkedness of the measure algebra, Canad. Math. Bull. 37 (1994), no. 1, 42–45. MR 1261556, DOI 10.4153/CMB-1994-007-7
- Ryszard Frankiewicz and Andrzej Gutek, Some remarks on embeddings of Boolean algebras and the topological spaces. I, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), no. 9-10, 471–476 (English, with Russian summary). MR 646336
- Thomas Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded. MR 1940513
- Anastasis Kamburelis, Iterations of Boolean algebras with measure, Arch. Math. Logic 29 (1989), no. 1, 21–28. MR 1022984, DOI 10.1007/BF01630808
- J. L. Kelley, Measures on Boolean algebras, Pacific J. Math. 9 (1959), 1165–1177. MR 108570, DOI 10.2140/pjm.1959.9.1165
- Sabine Koppelberg, James Donald Monk, and Robert Bonnet, Handbook of Boolean algebras, North-Holland Amsterdam, 1989.
- Arnold Miller, A Shelah example, http://www.math.wisc.edu/$\sim$miller/res/unpub /shelah.pdf, 2015.
- I. I. Parovičenko, On a universal bicompactum of weight $\aleph$, Dokl. Akad. Nauk SSSR 150 (1963), 36–39. MR 0150732
- Michel Talagrand, Séparabilité vague dans l’espace des mesures sur un compact, Israel J. Math. 37 (1980), no. 1-2, 171–180 (French, with English summary). MR 599312, DOI 10.1007/BF02762878
- Stevo Todorcevic, Chain-condition methods in topology, Topology Appl. 101 (2000), no. 1, 45–82. MR 1730899, DOI 10.1016/S0166-8641(98)00112-6
- Jan van Mill, Weak $P$-points in compact $F$-spaces, Topology Proc. 4 (1979), no. 2, 609–628 (1980). MR 598298
- Jan van Mill, Weak $P$-points in Čech-Stone compactifications, Trans. Amer. Math. Soc. 273 (1982), no. 2, 657–678. MR 667166, DOI 10.1090/S0002-9947-1982-0667166-3
Bibliographic Information
- Piotr Borodulin-Nadzieja
- Affiliation: Instytut Matematyczny, Uniwersytet Wrocławski, 50-384 Wrocław, Poland
- MR Author ID: 767718
- Email: pborod@math.uni.wroc.pl
- Tomasz Żuchowski
- Affiliation: Instytut Matematyczny, Uniwersytet Wrocławski, 50-384 Wrocław, Poland
- Email: tomasz.zuchowski@math.uni.wroc.pl
- Received by editor(s): May 18, 2016
- Received by editor(s) in revised form: April 16, 2017
- Published electronically: July 30, 2020
- Additional Notes: The first author was partially supported by National Science Center grant no. 2013/11/B/ST1/03596 (2014-2017).
- Communicated by: Mirna Dzamonja
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 4983-4995
- MSC (2010): Primary 03E75, 28A60, 28E15, 54D40
- DOI: https://doi.org/10.1090/proc/13804
- MathSciNet review: 4143408