Isometries of combinatorial Banach spaces
HTML articles powered by AMS MathViewer
- by C. Brech, V. Ferenczi and A. Tcaciuc
- Proc. Amer. Math. Soc. 148 (2020), 4845-4854
- DOI: https://doi.org/10.1090/proc/15122
- Published electronically: July 29, 2020
- PDF | Request permission
Abstract:
We prove that every isometry between two combinatorial spaces is determined by a permutation of the canonical unit basis combined with a change of signs. As a consequence, we show that in the case of Schreier spaces, all the isometries are given by a change of signs of the elements of the basis. Our results hold for both the real and the complex cases.References
- L. Antunes, K. Beanland, and H. Viet Chu, On the geometry of higher order Schreier spaces, preprint.
- Spiros A. Argyros and Stevo Todorcevic, Ramsey methods in analysis, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2005. MR 2145246, DOI 10.1007/3-7643-7360-1
- Steven F. Bellenot, Isometries of James space, Banach space theory (Iowa City, IA, 1987) Contemp. Math., vol. 85, Amer. Math. Soc., Providence, RI, 1989, pp. 1–18. MR 983378, DOI 10.1090/conm/085/983378
- Dong-Ni Tan, Some new properties and isometries on the unit spheres of generalized James spaces $J_p$, J. Math. Anal. Appl. 393 (2012), no. 2, 457–469. MR 2921688, DOI 10.1016/j.jmaa.2012.03.024
- Richard J. Fleming and James E. Jamison, Isometries on Banach spaces: function spaces, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 129, Chapman & Hall/CRC, Boca Raton, FL, 2003. MR 1957004
- Richard J. Fleming and James E. Jamison, Isometries on Banach spaces. Vol. 2, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 138, Chapman & Hall/CRC, Boca Raton, FL, 2008. Vector-valued function spaces. MR 2361284
- V. P. Fonf, The massiveness of the set of extreme points of the conjugate ball of a Banach space and polyhedral spaces, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 91–92 (Russian). MR 509400
- W. Gowers, Must an “explicitly defined” Banach space contain $c_0$ or $l_p$?, Feb. 17, 2009, Gowers’s Weblog: Mathematics related discussions.
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056, DOI 10.1007/978-3-642-66557-8
- Stefan Rolewicz, Metric linear spaces, Monografie Matematyczne, Tom 56. [Mathematical Monographs, Vol. 56], PWN—Polish Scientific Publishers, Warsaw, 1972. MR 0438074
- Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
Bibliographic Information
- C. Brech
- Affiliation: Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010 - CEP 05508-090 - São Paulo - SP - Brazil
- MR Author ID: 792312
- Email: brech@ime.usp.br
- V. Ferenczi
- Affiliation: Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, rua do Matão 1010 - CEP 05508-090 - São Paulo - SP, Brazil; Equipe d’Analyse Fonctionnelle, Institut de Mathématiques de Jussieu, Sorbonne Université - UPMC, Case 247, 4 place Jussieu, 75252 Paris Cedex 05, France
- MR Author ID: 360353
- ORCID: 0000-0001-5239-111X
- Email: ferenczi@ime.usp.br
- A. Tcaciuc
- Affiliation: Department of Mathematics and Statistics, MacEwan University, 10700-104 Avenue Edmonton, Alberta, T5J 4S2, Canada
- MR Author ID: 754491
- Email: tcaciuca@macewan.ca
- Received by editor(s): November 18, 2019
- Received by editor(s) in revised form: April 1, 2020
- Published electronically: July 29, 2020
- Additional Notes: The first author was supported by CNPq grant (308183/2018-5), and the second author by CNPq grants (303034/2015-7) and (303721/2019-2).
The first and second authors were supported by FAPESP grant (2016/25574-8).
The third author was supported by MacEwan Project grant (01891). - Communicated by: Stephen Dilworth
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 4845-4854
- MSC (2010): Primary 46B04, 46B45, 03E05, 03E75
- DOI: https://doi.org/10.1090/proc/15122
- MathSciNet review: 4143399