On a reverse isoperimetric inequality for relative outer parallel bodies
HTML articles powered by AMS MathViewer
- by Eugenia Saorín Gómez and Jesús Yepes Nicolás
- Proc. Amer. Math. Soc. 148 (2020), 4923-4931
- DOI: https://doi.org/10.1090/proc/15132
- Published electronically: August 4, 2020
- PDF | Request permission
Abstract:
We show a reverse isoperimetric inequality within the class of relative outer parallel bodies, with respect to a general convex body $E$, along with its equality condition. Based on the convexity of the sequence of quermassintegrals of Minkowski sums we also prove further inequalities.References
- Keith Ball, Volume ratios and a reverse isoperimetric inequality, J. London Math. Soc. (2) 44 (1991), no. 2, 351–359. MR 1136445, DOI 10.1112/jlms/s2-44.2.351
- Keith Ball, An elementary introduction to modern convex geometry, Flavors of geometry, Math. Sci. Res. Inst. Publ., vol. 31, Cambridge Univ. Press, Cambridge, 1997, pp. 1–58. MR 1491097, DOI 10.2977/prims/1195164788
- Franck Barthe, On a reverse form of the Brascamp-Lieb inequality, Invent. Math. 134 (1998), no. 2, 335–361. MR 1650312, DOI 10.1007/s002220050267
- Wilhelm Blaschke, Vorlesungen über Integralgeometrie, Deutscher Verlag der Wissenschaften, Berlin, 1955 (German). 3te Aufl. MR 0076373
- J. Bokowski, Eine verschärfte Ungleichung zwischen Volumen, Oberfläche und Inkugelradius im $R^{n}$, Elem. Math. 28 (1973), 43–44 (German). MR 328777
- T. Bonnesen, Les problèmes des isopérimètres et des isépiphanes, Collection de monographies sur la théorie des fonctions, Gauthier-Villars, Paris, 1929.
- Noah Samuel Brannen, The Wills conjecture, Trans. Amer. Math. Soc. 349 (1997), no. 10, 3977–3987. MR 1373630, DOI 10.1090/S0002-9947-97-01716-9
- Roman Chernov, Kostiantyn Drach, and Kateryna Tatarko, A sausage body is a unique solution for a reverse isoperimetric problem, Adv. Math. 353 (2019), 431–445. MR 3981993, DOI 10.1016/j.aim.2019.07.005
- V. I. Diskant, A generalization of Bonnesen’s inequalities, Dokl. Akad. Nauk SSSR 213 (1973), 519–521 (Russian). MR 0338925
- V. I. Diskant, Sharpenings of the isoperimetric inequality, Sibirsk. Mat. Ž. 14 (1973), 873–877, 911 (Russian). MR 0333989
- Peter M. Gruber, Convex and discrete geometry, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 336, Springer, Berlin, 2007. MR 2335496
- Rudolf Heine, Der Wertvorrat der gemischten Inhalte von zwei, drei und vier ebenen Eibereichen, Math. Ann. 115 (1938), no. 1, 115–129 (German). MR 1513176, DOI 10.1007/BF01448930
- Martin Henk, María A. Hernández Cifre, and Eugenia Saorín, Steiner polynomials via ultra-logconcave sequences, Commun. Contemp. Math. 14 (2012), no. 6, 1250040, 16. MR 2989644, DOI 10.1142/S021919971250040X
- M. A. Hernández Cifre and E. Saorín, On inner parallel bodies and quermassintegrals, Israel J. Math. 177 (2010), 29–47. MR 2684412, DOI 10.1007/s11856-010-0037-6
- J. R. Sangwine-Yager, Bonnesen-style inequalities for Minkowski relative geometry, Trans. Amer. Math. Soc. 307 (1988), no. 1, 373–382. MR 936821, DOI 10.1090/S0002-9947-1988-0936821-5
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014. MR 3155183
- G. C. Shephard, Inequalities between mixed volumes of convex sets, Mathematika 7 (1960), 125–138. MR 146736, DOI 10.1112/S0025579300001674
Bibliographic Information
- Eugenia Saorín Gómez
- Affiliation: ALTA Institute for Algebra, Geometry, Topology and their Applications, Universität Bremen, D-28359 Bremen, Germany
- ORCID: 0000-0002-1986-9641
- Email: esaoring@uni-bremen.de
- Jesús Yepes Nicolás
- Affiliation: Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100-Murcia, Spain
- Email: jesus.yepes@um.es
- Received by editor(s): July 25, 2019
- Received by editor(s) in revised form: February 25, 2020
- Published electronically: August 4, 2020
- Additional Notes: Both authors were supported by “Programa de Ayudas a Grupos de Excelencia de la Región de Murcia”, Fundación Séneca, 19901/GERM/15.
The second author was supported by MINECO/FEDER project MTM2015-65430-P and MICINN/FEDER project PGC2018-097046-B-I00. - Communicated by: Deane Yang
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 4923-4931
- MSC (2010): Primary 52A20, 52A40
- DOI: https://doi.org/10.1090/proc/15132
- MathSciNet review: 4143404