Undecidability, unit groups, and some totally imaginary infinite extensions of $\mathbb {Q}$
HTML articles powered by AMS MathViewer
- by Caleb Springer
- Proc. Amer. Math. Soc. 148 (2020), 4705-4715
- DOI: https://doi.org/10.1090/proc/15153
- Published electronically: August 11, 2020
- PDF | Request permission
Abstract:
We produce new examples of totally imaginary infinite extensions of $\mathbb {Q}$ which have undecidable first-order theory by generalizing the methods used by Martínez-Ranero, Utreras, and Videla for $\mathbb {Q}^{(2)}$. In particular, we use parametrized families of polynomials whose roots are totally real units to apply methods originally developed to prove the undecidability of totally real fields. This proves the undecidability of $\mathbb {Q}^{(d)}_{ab}$ for all $d \geq 2$.References
- Enrico Bombieri and Umberto Zannier, A note on heights in certain infinite extensions of $\Bbb Q$, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 12 (2001), 5–14 (2002) (English, with English and Italian summaries). MR 1898444
- M. Castillo Fernández, On the Julia Robinson number of rings of totally real algebraic integers in some towers of nested square roots, PhD thesis, Universidad de Concepción, 2018. http://repositorio.udec.cl/handle/11594/3003.
- M. Castillo Fernández, X. Vidaux, and C. R. Videla, Julia Robinson numbers and arithmetical dynamic of quadratic polynomials, arXiv e-prints, 2017.
- Sara Checcoli and Martin Widmer, On the Northcott property and other properties related to polynomial mappings, Math. Proc. Cambridge Philos. Soc. 155 (2013), no. 1, 1–12. MR 3065255, DOI 10.1017/S0305004113000042
- Martin Davis, Hilary Putnam, and Julia Robinson, The decision problem for exponential diophantine equations, Ann. of Math. (2) 74 (1961), 425–436. MR 133227, DOI 10.2307/1970289
- Michael D. Fried, Dan Haran, and Helmut Völklein, Real Hilbertianity and the field of totally real numbers, Arithmetic geometry (Tempe, AZ, 1993) Contemp. Math., vol. 174, Amer. Math. Soc., Providence, RI, 1994, pp. 1–34. MR 1299732, DOI 10.1090/conm/174/01849
- Kenji Fukuzaki, Definability of the ring of integers in some infinite algebraic extensions of the rationals, MLQ Math. Log. Q. 58 (2012), no. 4-5, 317–332. MR 2965419, DOI 10.1002/malq.201110020
- Pierre Gillibert and Gabriele Ranieri, Julia Robinson numbers, Int. J. Number Theory 15 (2019), no. 8, 1565–1599. MR 3994148, DOI 10.1142/S1793042119500908
- M.-N. Gras, Table numérique du nombre de classes et des unités des extensions cycliques réelles de degré 4 de $\mathbb {Q}$, Publications Mathématiques de Besançon (1977/78), 1–79.
- Marie-Nicole Gras, Special units in real cyclic sextic fields, Math. Comp. 48 (1987), no. 177, 179–182. MR 866107, DOI 10.1090/S0025-5718-1987-0866107-1
- E. Kamke, Verallgemeinerungen des Waring-Hilbertschen Satzes, Math. Ann. 83 (1921), no. 1-2, 85–112 (German). MR 1512001, DOI 10.1007/BF01464230
- Yasuhiro Kishi, A family of cyclic cubic polynomials whose roots are systems of fundamental units, J. Number Theory 102 (2003), no. 1, 90–106. MR 1994474, DOI 10.1016/S0022-314X(03)00085-4
- Serge Lang, Algebra, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR 1878556, DOI 10.1007/978-1-4613-0041-0
- Carlos Martínez-Ranero, Javier Utreras, and Carlos R. Videla, Undecidability of $\Bbb Q^{(2)}$, Proc. Amer. Math. Soc. 148 (2020), no. 3, 961–964. MR 4055926, DOI 10.1090/proc/14849
- Ju. V. Matijasevič, The Diophantineness of enumerable sets, Dokl. Akad. Nauk SSSR 191 (1970), 279–282 (Russian). MR 0258744
- Julia Robinson, Definability and decision problems in arithmetic, J. Symbolic Logic 14 (1949), 98–114. MR 31446, DOI 10.2307/2266510
- Julia Robinson, The undecidability of algebraic rings and fields, Proc. Amer. Math. Soc. 10 (1959), 950–957. MR 112842, DOI 10.1090/S0002-9939-1959-0112842-7
- Julia Robinson, On the decision problem for algebraic rings, Studies in mathematical analysis and related topics, Stanford Univ. Press, Stanford, Calif., 1962, pp. 297–304. MR 0146083
- R. S. Rumely, Undecidability and definability for the theory of global fields, Trans. Amer. Math. Soc. 262 (1980), no. 1, 195–217. MR 583852, DOI 10.1090/S0002-9947-1980-0583852-6
- René Schoof and Lawrence C. Washington, Quintic polynomials and real cyclotomic fields with large class numbers, Math. Comp. 50 (1988), no. 182, 543–556. MR 929552, DOI 10.1090/S0025-5718-1988-0929552-2
- Daniel Shanks, The simplest cubic fields, Math. Comp. 28 (1974), 1137–1152. MR 352049, DOI 10.1090/S0025-5718-1974-0352049-8
- Alexandra Shlapentokh, First-order decidability and definability of integers in infinite algebraic extensions of the rational numbers, Israel J. Math. 226 (2018), no. 2, 579–633. MR 3819703, DOI 10.1007/s11856-018-1708-y
- Carl Siegel, Darstellung total positiver Zahlen durch Quadrate, Math. Z. 11 (1921), no. 3-4, 246–275 (German). MR 1544496, DOI 10.1007/BF01203627
- Lou van den Dries, Elimination theory for the ring of algebraic integers, J. Reine Angew. Math. 388 (1988), 189–205. MR 944190, DOI 10.1515/crll.1988.388.189
- Xavier Vidaux and Carlos R. Videla, Definability of the natural numbers in totally real towers of nested square roots, Proc. Amer. Math. Soc. 143 (2015), no. 10, 4463–4477. MR 3373945, DOI 10.1090/S0002-9939-2015-12592-0
- Xavier Vidaux and Carlos R. Videla, A note on the Northcott property and undecidability, Bull. Lond. Math. Soc. 48 (2016), no. 1, 58–62. MR 3455748, DOI 10.1112/blms/bdv089
- Carlos R. Videla, Definability of the ring of integers in pro-$p$ Galois extensions of number fields, Israel J. Math. 118 (2000), 1–14. MR 1776073, DOI 10.1007/BF02803513
- Carlos R. Videla, The undecidability of cyclotomic towers, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3671–3674. MR 1694882, DOI 10.1090/S0002-9939-00-05544-1
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
- Martin Widmer, On certain infinite extensions of the rationals with Northcott property, Monatsh. Math. 162 (2011), no. 3, 341–353. MR 2775852, DOI 10.1007/s00605-009-0162-7
- Robert S. Wolf, A tour through mathematical logic, Carus Mathematical Monographs, vol. 30, Mathematical Association of America, Washington, DC, 2005. MR 2112516
Bibliographic Information
- Caleb Springer
- Affiliation: Department of Mathematics, The Pennsylvania State University, University Park, Pennsylvania 16802
- MR Author ID: 1326228
- ORCID: 0000-0003-1514-4755
- Email: cks5320@psu.edu
- Received by editor(s): October 2, 2019
- Received by editor(s) in revised form: February 28, 2020, and April 18, 2020
- Published electronically: August 11, 2020
- Additional Notes: The author was partially supported by National Science Foundation award CNS-1617802.
- Communicated by: Heike Mildenberger
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 4705-4715
- MSC (2010): Primary 11R04, 11U05; Secondary 11R80, 11D99, 03D35
- DOI: https://doi.org/10.1090/proc/15153
- MathSciNet review: 4143388