## Equivalence of higher order linear Riemann-Liouville fractional differential and integral equations

HTML articles powered by AMS MathViewer

- by Kunquan Lan
- Proc. Amer. Math. Soc.
**148**(2020), 5225-5234 - DOI: https://doi.org/10.1090/proc/15169
- Published electronically: September 18, 2020
- PDF | Request permission

## Abstract:

A linear $n$th order (Riemann-Liouville) fractional differential equation with $m+1$ initial values, together with a suitable assumption, is proved to be equivalent to a Volterra integral equation of the second kind involving an $n$th order (Riemann-Liouville) fractional integral operator. Two special cases of the result are given: one shows that a well-known result on the solution of an $n$th order fractional differential equation needs an additional condition to hold, and another strengthens a previous result on an $n$th order fractional integral operator composed with an $n$th order fractional differential operator.## References

- Imed Bachar, Habib Mâagli, and Vicenţiu D. Rădulescu,
*Positive solutions for superlinear Riemann-Liouville fractional boundary-value problems*, Electron. J. Differential Equations (2017), Paper No. 240, 16. MR**3711193** - Zhanbing Bai and Haishen Lü,
*Positive solutions for boundary value problem of nonlinear fractional differential equation*, J. Math. Anal. Appl.**311**(2005), no. 2, 495–505. MR**2168413**, DOI 10.1016/j.jmaa.2005.02.052 - Jiqin Deng and Ziming Deng,
*Existence of solutions of initial value problems for nonlinear fractional differential equations*, Appl. Math. Lett.**32**(2014), 6–12. MR**3182838**, DOI 10.1016/j.aml.2014.02.001 - Jiqin Deng and Lifeng Ma,
*Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations*, Appl. Math. Lett.**23**(2010), no. 6, 676–680. MR**2609797**, DOI 10.1016/j.aml.2010.02.007 - Kai Diethelm,
*The analysis of fractional differential equations*, Lecture Notes in Mathematics, vol. 2004, Springer-Verlag, Berlin, 2010. An application-oriented exposition using differential operators of Caputo type. MR**2680847**, DOI 10.1007/978-3-642-14574-2 - Paul W. Eloe and Tyler Masthay,
*Initial value problems for Caputo fractional differential equations*, J. Fract. Calc. Appl.**9**(2018), no. 2, 178–195. MR**3772633** - Moustafa El-Shahed,
*Positive solutions for boundary value problem of nonlinear fractional differential equation*, Abstr. Appl. Anal. , posted on (2007), Art. ID 10368, 8. MR**2353784**, DOI 10.1155/2007/10368 - Christopher S. Goodrich,
*Existence of a positive solution to a class of fractional differential equations*, Appl. Math. Lett.**23**(2010), no. 9, 1050–1055. MR**2659137**, DOI 10.1016/j.aml.2010.04.035 - G. H. Hardy and J. E. Littlewood,
*Some properties of fractional integrals. I*, Math. Z.**27**(1928), no. 1, 565–606. MR**1544927**, DOI 10.1007/BF01171116 - Johnny Henderson and Rodica Luca,
*Existence of positive solutions for a system of semipositone fractional boundary value problems*, Electron. J. Qual. Theory Differ. Equ. , posted on (2016), Paper No. 22, 28. MR**3498740**, DOI 10.14232/ejqtde.2016.1.22 - Anatoly A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo,
*Theory and applications of fractional differential equations*, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006. MR**2218073** - Nickolai Kosmatov,
*Integral equations and initial value problems for nonlinear differential equations of fractional order*, Nonlinear Anal.**70**(2009), no. 7, 2521–2529. MR**2499719**, DOI 10.1016/j.na.2008.03.037 - K. Q. Lan and W. Lin,
*Positive solutions of systems of Caputo fractional differential equations*, Commun. Appl. Anal.**17**(2013), no. 1, 61–85. MR**3075769** - K. Q. Lan and W. Lin,
*Multiple positive solutions of systems of Hammerstein integral equations with applications to fractional differential equations*, J. Lond. Math. Soc. (2)**83**(2011), no. 2, 449–469. MR**2776646**, DOI 10.1112/jlms/jdq090 - Sihua Liang and Jihui Zhang,
*Positive solutions for boundary value problems of nonlinear fractional differential equation*, Nonlinear Anal.**71**(2009), no. 11, 5545–5550. MR**2560222**, DOI 10.1016/j.na.2009.04.045 - Walter Rudin,
*Real and complex analysis*, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR**924157** - Stefan G. Samko, Anatoly A. Kilbas, and Oleg I. Marichev,
*Fractional integrals and derivatives*, Gordon and Breach Science Publishers, Yverdon, 1993. Theory and applications; Edited and with a foreword by S. M. Nikol′skiĭ; Translated from the 1987 Russian original; Revised by the authors. MR**1347689** - Svatoslav Staněk,
*The existence of positive solutions of singular fractional boundary value problems*, Comput. Math. Appl.**62**(2011), no. 3, 1379–1388. MR**2824725**, DOI 10.1016/j.camwa.2011.04.048 - J. R. L. Webb,
*Weakly singular Gronwall inequalities and applications to fractional differential equations*, J. Math. Anal. Appl.**471**(2019), no. 1-2, 692–711. MR**3906348**, DOI 10.1016/j.jmaa.2018.11.004 - Jeffrey R. L. Webb,
*Initial value problems for Caputo fractional equations with singular nonlinearities*, Electron. J. Differential Equations (2019), Paper No. 117, 32. MR**4028821** - Xiaojie Xu, Daqing Jiang, and Chengjun Yuan,
*Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation*, Nonlinear Anal.**71**(2009), no. 10, 4676–4688. MR**2548701**, DOI 10.1016/j.na.2009.03.030 - Chengbo Zhai, Weiping Yan, and Chen Yang,
*A sum operator method for the existence and uniqueness of positive solutions to Riemann-Liouville fractional differential equation boundary value problems*, Commun. Nonlinear Sci. Numer. Simul.**18**(2013), no. 4, 858–866. MR**2996597**, DOI 10.1016/j.cnsns.2012.08.037 - Shuqin Zhang,
*Positive solutions to singular boundary value problem for nonlinear fractional differential equation*, Comput. Math. Appl.**59**(2010), no. 3, 1300–1309. MR**2579492**, DOI 10.1016/j.camwa.2009.06.034 - X. Zhang and H. Feng,
*Existence of positive solutions to a singular semipositone boundary value problem of nonlinear fractional differential systems*, Res. Appl. Math.**1**(2017), Article ID 101261, 1-12. - Xiaofeng Zhang and Hanying Feng,
*Positive solutions for a singular semipositone boundary value problem of nonlinear fractional differential equations*, J. Comput. Anal. Appl.**26**(2019), no. 2, 270–279. MR**3889232** - Yige Zhao, Shurong Sun, Zhenlai Han, and Qiuping Li,
*Positive solutions to boundary value problems of nonlinear fractional differential equations*, Abstr. Appl. Anal. , posted on (2011), Art. ID 390543, 16. MR**2746016**, DOI 10.1155/2011/390543

## Bibliographic Information

**Kunquan Lan**- Affiliation: Department of Mathematics, Ryerson University, Toronto, Ontario, M5B 2K3 Canada
- MR Author ID: 256493
- Email: klan@ryerson.ca
- Received by editor(s): March 3, 2020
- Received by editor(s) in revised form: April 16, 2020
- Published electronically: September 18, 2020
- Additional Notes: The author was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada under grant no. 135752-2018.
- Communicated by: Wenxian Shen
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**148**(2020), 5225-5234 - MSC (2010): Primary 34A08; Secondary 26A33, 34A12, 45D05
- DOI: https://doi.org/10.1090/proc/15169
- MathSciNet review: 4163834