Projective-umbilic points of circular real hypersurfaces in $\mathbb {C}^2$
Authors:
David E. Barrett and Dusty E. Grundmeier
Journal:
Proc. Amer. Math. Soc. 148 (2020), 5241-5248
MSC (2010):
Primary 32V10
DOI:
https://doi.org/10.1090/proc/15176
Published electronically:
September 18, 2020
MathSciNet review:
4163836
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We show that the boundary of any bounded strongly pseudoconvex complete circular domain in $\mathbb {C}^2$ must contain points that are exceptionally tangent to a projective image of the unit sphere.
- Mats Andersson, Mikael Passare, and Ragnar Sigurdsson, Complex convexity and analytic functionals, Progress in Mathematics, vol. 225, Birkhäuser Verlag, Basel, 2004. MR 2060426
- David E. Barrett, Holomorphic projection and duality for domains in complex projective space, Trans. Amer. Math. Soc. 368 (2016), no. 2, 827–850. MR 3430351, DOI https://doi.org/10.1090/S0002-9947-2015-06338-7
- David E. Barrett and Dusty E. Grundmeier, Sums of CR functions from competing CR structures, Pacific J. Math. 293 (2018), no. 2, 257–275. MR 3730737, DOI https://doi.org/10.2140/pjm.2018.293.257
- Marcel Berger, Geometry revealed, Springer, Heidelberg, 2010. A Jacob’s ladder to modern higher geometry; Translated from the French by Lester Senechal. MR 2724440
- Michael Bolt, The Möbius geometry of hypersurfaces, Michigan Math. J. 56 (2008), no. 3, 603–622. MR 2490649, DOI https://doi.org/10.1307/mmj/1231770363
- Daniel M. Burns Jr., Global behavior of some tangential Cauchy-Riemann equations, Partial differential equations and geometry (Proc. Conf., Park City, Utah, 1977) Lecture Notes in Pure and Appl. Math., vol. 48, Dekker, New York, 1979, pp. 51–56. MR 535588
- Elie Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes, Ann. Mat. Pura Appl. 11 (1933), no. 1, 17–90 (French). MR 1553196, DOI https://doi.org/10.1007/BF02417822
- Élie Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes II, Ann. Scuola Norm. Super. Pisa Cl. Sci. (2) 1 (1932), no. 4, 333–354 (French). MR 1556687
- Jacqueline Detraz and Jean-Marie Trépreau, Une caractérisation des quadriques hermitiennes dans ${\bf C}^n$, J. Analyse Math. 55 (1990), 51–58 (French). MR 1094711, DOI https://doi.org/10.1007/BF02789197
- Peter Ebenfelt and Duong Ngoc Son, Umbilical points on three dimensional strictly pseudoconvex CR manifolds I: manifolds with $U(1)$-action, Math. Ann. 368 (2017), no. 1-2, 537–560. MR 3651582, DOI https://doi.org/10.1007/s00208-016-1439-5
- Peter Ebenfelt, Duong Ngoc Son, and Dmitri Zaitsev, A family of compact strictly pseudoconvex hypersurfaces in $\Bbb C^2$ without umbilical points, Math. Res. Lett. 25 (2018), no. 1, 75–84. MR 3818615, DOI https://doi.org/10.4310/mrl.2018.v25.n1.a4
- E. Ghys, Cercles osculateurs et géométrie lorentzienne, talk at the journée inaugurale du CMI, Marseille, February 1995.
- Christopher L. Hammond, Invariants of transformation groups acting on real hypersurfaces of complex spaces, ProQuest LLC, Ann Arbor, MI, 2009. Thesis (Ph.D.)–University of Michigan. MR 2713884
- Xiaojun Huang and Shanyu Ji, Every real ellipsoid in $\Bbb C^2$ admits CR umbilical points, Trans. Amer. Math. Soc. 359 (2007), no. 3, 1191–1204. MR 2262847, DOI https://doi.org/10.1090/S0002-9947-06-04069-4
- Gary R. Jensen, Projective deformation and biholomorphic equivalence of real hypersurfaces, Ann. Global Anal. Geom. 1 (1983), no. 1, 1–34. MR 739891, DOI https://doi.org/10.1007/BF02329737
- A. Kneser, Bemerkungen über die Anzahl der Extrema des Krümmung auf geschlossenen Kurven und uber verwandte Fragen in einer nicht euklidischen Geometrie, Festschrift Heinrich Weber, Teubner (1912), 170–180.
- Olli Lehto, Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics, vol. 109, Springer-Verlag, New York, 1987. MR 867407
- S. Mukhopadhyaya, New Methods in the Geometry of a Plane Arc, Bull. Calcutta Math. Soc. 1 (1908), 31–38.
- Robert Osserman, The four-or-more vertex theorem, Amer. Math. Monthly 92 (1985), no. 5, 332–337. MR 790188, DOI https://doi.org/10.2307/2323126
- V. Ovsienko and S. Tabachnikov, Sturm theory, Ghys theorem on zeroes of the Schwarzian derivative and flattening of Legendrian curves, Selecta Math. (N.S.) 2 (1996), no. 2, 297–307. MR 1414890, DOI https://doi.org/10.1007/BF01587937
- H. Rossi, Attaching analytic spaces to an analytic space along a pseudoconcave boundary, Proc. Conf. Complex Analysis (Minneapolis, 1964) Springer, Berlin, 1965, pp. 242–256. MR 0176106
- John W. Rutter, Geometry of curves, Chapman & Hall/CRC Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2000. MR 1750083
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 32V10
Retrieve articles in all journals with MSC (2010): 32V10
Additional Information
David E. Barrett
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1043
MR Author ID:
31620
Email:
barrett@umich.edu
Dusty E. Grundmeier
Affiliation:
Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138-2901
MR Author ID:
931286
Email:
deg@math.harvard.edu
Received by editor(s):
March 3, 2020
Received by editor(s) in revised form:
May 5, 2020
Published electronically:
September 18, 2020
Additional Notes:
The first author was supported in part by NSF grant number DMS-1500142.
Communicated by:
Harold P. Boas
Article copyright:
© Copyright 2020
American Mathematical Society