On Schatten restricted norms
HTML articles powered by AMS MathViewer
- by Martin Miglioli
- Proc. Amer. Math. Soc. 148 (2020), 5249-5259
- DOI: https://doi.org/10.1090/proc/15179
- Published electronically: September 18, 2020
- PDF | Request permission
Abstract:
We consider norms on a complex separable Hilbert space such that $\langle a\xi ,\xi \rangle \leq \|\xi \|^2\leq \langle b\xi ,\xi \rangle$ for positive invertible operators $a$ and $b$ that differ by an operator in the Schatten class. We prove that these norms have unitarizable isometry groups. As a result, if their isometry groups do not leave any finite dimensional subspace invariant, then the norms must be Hilbertian. The approach involves metric geometric arguments related to the canonical action on the non-positively curved space of positive invertible Schatten perturbations of the identity. Our proof of the main result uses a generalization of a unitarization theorem which follows from the Bruhat-Tits fixed point theorem.References
- Wasim Audeh and Fuad Kittaneh, Singular value inequalities for compact operators, Linear Algebra Appl. 437 (2012), no. 10, 2516–2522. MR 2964703, DOI 10.1016/j.laa.2012.06.032
- Stefan Banach, Théorie des opérations linéaires, Éditions Jacques Gabay, Sceaux, 1993 (French). Reprint of the 1932 original. MR 1357166
- Rajendra Bhatia and Fuad Kittaneh, The matrix arithmetic-geometric mean inequality revisited, Linear Algebra Appl. 428 (2008), no. 8-9, 2177–2191. MR 2401646, DOI 10.1016/j.laa.2007.11.030
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5–251 (French). MR 327923
- Cristian Conde, Nonpositive curvature in $p$-Schatten class, J. Math. Anal. Appl. 356 (2009), no. 2, 664–673. MR 2524299, DOI 10.1016/j.jmaa.2009.03.036
- Cristian Conde and Gabriel Larotonda, Manifolds of semi-negative curvature, Proc. Lond. Math. Soc. (3) 100 (2010), no. 3, 670–704. MR 2640287, DOI 10.1112/plms/pdp042
- Gustavo Corach, Horacio Porta, and Lázaro Recht, Geodesics and operator means in the space of positive operators, Internat. J. Math. 4 (1993), no. 2, 193–202. MR 1217380, DOI 10.1142/S0129167X9300011X
- Jacques Dixmier, Les moyennes invariantes dans les semi-groupes et leurs applications, Acta Sci. Math. (Szeged) 12 (1950), 213–227 (French). MR 37470
- Valentin Ferenczi and Christian Rosendal, On isometry groups and maximal symmetry, Duke Math. J. 162 (2013), no. 10, 1771–1831. MR 3079260, DOI 10.1215/00127094-2322898
- Serge Lang, Fundamentals of differential geometry, Graduate Texts in Mathematics, vol. 191, Springer-Verlag, New York, 1999. MR 1666820, DOI 10.1007/978-1-4612-0541-8
- Gabriel Larotonda, Nonpositive curvature: a geometrical approach to Hilbert-Schmidt operators, Differential Geom. Appl. 25 (2007), no. 6, 679–700. MR 2373944, DOI 10.1016/j.difgeo.2007.06.016
- MartĂn Miglioli, Unitarization of uniformly bounded subgroups in finite von Neumann algebras, Bull. Lond. Math. Soc. 46 (2014), no. 6, 1264–1266. MR 3291262, DOI 10.1112/blms/bdu080
- MartĂn Miglioli and Peter Schlicht, Geometric aspects of similarity problems, Int. Math. Res. Not. IMRN 23 (2018), 7171–7197. MR 3883130, DOI 10.1093/imrn/rnx102
- Karl-Hermann Neeb, A Cartan-Hadamard theorem for Banach-Finsler manifolds, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part II (Haifa, 2000), 2002, pp. 115–156. MR 1950888, DOI 10.1023/A:1021221029301
Bibliographic Information
- Martin Miglioli
- Affiliation: Instituto Argentino de Matemática-CONICET, Saavedra 15, Piso 3, (1083) Buenos Aires, Argentina
- MR Author ID: 1060057
- Email: martin.miglioli@gmail.com
- Received by editor(s): March 13, 2020
- Received by editor(s) in revised form: April 21, 2020, May 3, 2020, and May 6, 2020
- Published electronically: September 18, 2020
- Additional Notes: The author was supported by IAM-CONICET, grants PIP 2010-0757 (CONICET) and PICT 2010-2478 (ANPCyT)
- Communicated by: Stephen Dilworth
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 5249-5259
- MSC (2010): Primary 46B04, 47B10, 58B20; Secondary 22F50
- DOI: https://doi.org/10.1090/proc/15179
- MathSciNet review: 4163837