Groups acting on trees and the Eilenberg–Ganea problem for families
HTML articles powered by AMS MathViewer
- by Luis Jorge Sánchez Saldaña
- Proc. Amer. Math. Soc. 148 (2020), 5469-5479
- DOI: https://doi.org/10.1090/proc/15203
- Published electronically: August 17, 2020
- PDF | Request permission
Abstract:
We construct new examples of groups with cohomological dimension 2 and geometric dimension 3 with respect to the families of finite subgroups, virtually abelian groups of bounded rank, and the family of virtually poly-cyclic subgroups. Our main ingredients are the examples constructed by Brady–Leary–Nucinckis and Fluch–Leary, and Bass–Serre theory.References
- Noel Brady, Ian J. Leary, and Brita E. A. Nucinkis, On algebraic and geometric dimensions for groups with torsion, J. London Math. Soc. (2) 64 (2001), no. 2, 489–500. MR 1853466, DOI 10.1112/S002461070100240X
- Dieter Degrijse, A cohomological characterization of locally virtually cyclic groups, Adv. Math. 305 (2017), 935–952. MR 3570151, DOI 10.1016/j.aim.2016.10.014
- Dieter Degrijse and Nansen Petrosyan, Geometric dimension of groups for the family of virtually cyclic subgroups, J. Topol. 7 (2014), no. 3, 697–726. MR 3252961, DOI 10.1112/jtopol/jtt045
- M. J. Dunwoody and M. E. Sageev, JSJ-splittings for finitely presented groups over slender groups, Invent. Math. 135 (1999), no. 1, 25–44. MR 1664694, DOI 10.1007/s002220050278
- Martin G. Fluch and Ian J. Leary, An Eilenberg-Ganea phenomenon for actions with virtually cyclic stabilisers, Groups Geom. Dyn. 8 (2014), no. 1, 135–142. MR 3209705, DOI 10.4171/GGD/219
- Jingyin Huang and Tomasz Prytuła, Commensurators of abelian subgroups in CAT(0) groups, arXiv e-prints, page arXiv:1812.09035, Dec 2018.
- Kyle Joecken, Jean-François Lafont, and Luis Jorge Sánchez Saldaña, Virtually cyclic dimension for 3-manifold groups, arXiv e-prints, page arXiv:1904.04632, Apr 2019.
- Wolfgang Lück and David Meintrup, On the universal space for group actions with compact isotropy, Geometry and topology: Aarhus (1998), Contemp. Math., vol. 258, Amer. Math. Soc., Providence, RI, 2000, pp. 293–305. MR 1778113, DOI 10.1090/conm/258/1778113
- Jean-François Lafont and Ivonne J. Ortiz, Lower algebraic $K$-theory of hyperbolic 3-simplex reflection groups, Comment. Math. Helv. 84 (2009), no. 2, 297–337. MR 2495796, DOI 10.4171/CMH/163
- Ian J. Leary and Nansen Petrosyan, On dimensions of groups with cocompact classifying spaces for proper actions, Adv. Math. 311 (2017), 730–747. MR 3628229, DOI 10.1016/j.aim.2017.03.008
- Wolfgang Lück, Survey on classifying spaces for families of subgroups, Infinite groups: geometric, combinatorial and dynamical aspects, Progr. Math., vol. 248, Birkhäuser, Basel, 2005, pp. 269–322. MR 2195456, DOI 10.1007/3-7643-7447-0_{7}
- Conchita Martínez-Pérez, A spectral sequence in Bredon (co)homology, J. Pure Appl. Algebra 176 (2002), no. 2-3, 161–173. MR 1933713, DOI 10.1016/S0022-4049(02)00154-8
- Guido Mislin and Alain Valette, Proper group actions and the Baum-Connes conjecture, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2003. MR 2027168, DOI 10.1007/978-3-0348-8089-3
- Ana Claudia Lopes Onorio. Relative ends and splittings of groups. PhD thesis, University of Southampton, August 2018.
- Tomasz Prytuła, Bredon cohomological dimension for virtually abelian stabilisers for CAT(0) groups, arXiv e-prints, page arXiv:1810.08924, Oct 2018.
- Jean-Pierre Serre, Trees, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. Translated from the French original by John Stillwell; Corrected 2nd printing of the 1980 English translation. MR 1954121
Bibliographic Information
- Luis Jorge Sánchez Saldaña
- Affiliation: Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Cd. Universitaria, Colonia Copilco el Bajo, Delegación Coyoacán, 04510, México D.F., Mexico
- Email: luisjorge@ciencias.unam.mx
- Received by editor(s): November 6, 2019
- Received by editor(s) in revised form: May 15, 2020, and May 21, 2020
- Published electronically: August 17, 2020
- Additional Notes: This work was funded by the Mexican Council of Science and Technology via the program Estancias postdoctorales en el extranjero, and by the NSF via grant DMS-1812028.
- Communicated by: David Futer
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 5469-5479
- MSC (2010): Primary 57M20, 20J05; Secondary 55N25
- DOI: https://doi.org/10.1090/proc/15203
- MathSciNet review: 4163857