## Another counterexample to Zygmund’s conjecture

HTML articles powered by AMS MathViewer

- by Guillermo Rey
- Proc. Amer. Math. Soc.
**148**(2020), 5269-5275 - DOI: https://doi.org/10.1090/proc/15222
- Published electronically: September 24, 2020
- PDF | Request permission

## Abstract:

We present a simple dyadic construction that yields a new counterexample to Zygmund’s conjecture in differentiation of integrals. Our result recovers Soria’s classical results in dimensions three and four, through a different construction, and gives new ones in all other dimensions.## References

- A. Cordoba and R. Fefferman,
*A geometric proof of the strong maximal theorem*, Ann. of Math. (2)**102**(1975), no. 1, 95–100. MR**379785**, DOI 10.2307/1970976 - Antonio Córdoba,
*Maximal functions, covering lemmas and Fourier multipliers*, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 29–50. MR**545237** - Antonio Córdoba,
*Maximal functions: a proof of a conjecture of A. Zygmund*, Bull. Amer. Math. Soc. (N.S.)**1**(1979), no. 1, 255–257. MR**513753**, DOI 10.1090/S0273-0979-1979-14576-2 - Miguel de Guzmán,
*Differentiation of integrals in $R^{n}$*, Lecture Notes in Mathematics, Vol. 481, Springer-Verlag, Berlin-New York, 1975. With appendices by Antonio Córdoba, and Robert Fefferman, and two by Roberto Moriyón. MR**0457661** - E. M. Stein,
*Some problems in harmonic analysis*, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–20. MR**545235** - Robert Fefferman and Jill Pipher,
*A covering lemma for rectangles in ${\Bbb R}^n$*, Proc. Amer. Math. Soc.**133**(2005), no. 11, 3235–3241. MR**2161145**, DOI 10.1090/S0002-9939-05-07902-5 - B. Jessen, J. Marcinkiewicz, and A. Zygmund, Note on the differentiability of multiple integrals,
*Fundamenta Mathematicae*, 25(1):217–234, 1935. - Andrei K. Lerner and Fedor Nazarov,
*Intuitive dyadic calculus: the basics*, Expo. Math.**37**(2019), no. 3, 225–265. MR**4007575**, DOI 10.1016/j.exmath.2018.01.001 - Fernando Soria,
*Examples and counterexamples to a conjecture in the theory of differentiation of integrals*, Ann. of Math. (2)**123**(1986), no. 1, 1–9. MR**825837**, DOI 10.2307/1971350 - Alexander Stokolos,
*Zygmund’s program: some partial solutions*, Ann. Inst. Fourier (Grenoble)**55**(2005), no. 5, 1439–1453 (English, with English and French summaries). MR**2172270** - A. Zygmund,
*A note on the differentiability of integrals*, Colloq. Math.**16**(1967), 199–204. MR**210847**, DOI 10.4064/cm-16-1-199-204

## Bibliographic Information

**Guillermo Rey**- Affiliation: Citadel, 131 S Dearborn St, Chicago, Illinois 60603
- MR Author ID: 1050866
- ORCID: 0000-0001-8112-7262
- Email: guillermo.reyley@gmail.com
- Received by editor(s): April 4, 2020
- Received by editor(s) in revised form: May 25, 2020
- Published electronically: September 24, 2020
- Communicated by: Dmitriy Bilyk
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**148**(2020), 5269-5275 - MSC (2010): Primary 42B25
- DOI: https://doi.org/10.1090/proc/15222
- MathSciNet review: 4163839