Another counterexample to Zygmund’s conjecture
Author:
Guillermo Rey
Journal:
Proc. Amer. Math. Soc. 148 (2020), 5269-5275
MSC (2010):
Primary 42B25
DOI:
https://doi.org/10.1090/proc/15222
Published electronically:
September 24, 2020
MathSciNet review:
4163839
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We present a simple dyadic construction that yields a new counterexample to Zygmund’s conjecture in differentiation of integrals. Our result recovers Soria’s classical results in dimensions three and four, through a different construction, and gives new ones in all other dimensions.
- A. Cordoba and R. Fefferman, A geometric proof of the strong maximal theorem, Ann. of Math. (2) 102 (1975), no. 1, 95–100. MR 379785, DOI https://doi.org/10.2307/1970976
- Antonio Córdoba, Maximal functions, covering lemmas and Fourier multipliers, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 29–50. MR 545237
- Antonio Córdoba, Maximal functions: a proof of a conjecture of A. Zygmund, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 1, 255–257. MR 513753, DOI https://doi.org/10.1090/S0273-0979-1979-14576-2
- Miguel de Guzmán, Differentiation of integrals in $R^{n}$, Lecture Notes in Mathematics, Vol. 481, Springer-Verlag, Berlin-New York, 1975. With appendices by Antonio Córdoba, and Robert Fefferman, and two by Roberto Moriyón. MR 0457661
- E. M. Stein, Some problems in harmonic analysis, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–20. MR 545235
- Robert Fefferman and Jill Pipher, A covering lemma for rectangles in ${\Bbb R}^n$, Proc. Amer. Math. Soc. 133 (2005), no. 11, 3235–3241. MR 2161145, DOI https://doi.org/10.1090/S0002-9939-05-07902-5
- B. Jessen, J. Marcinkiewicz, and A. Zygmund, Note on the differentiability of multiple integrals, Fundamenta Mathematicae, 25(1):217–234, 1935.
- Andrei K. Lerner and Fedor Nazarov, Intuitive dyadic calculus: the basics, Expo. Math. 37 (2019), no. 3, 225–265. MR 4007575, DOI https://doi.org/10.1016/j.exmath.2018.01.001
- Fernando Soria, Examples and counterexamples to a conjecture in the theory of differentiation of integrals, Ann. of Math. (2) 123 (1986), no. 1, 1–9. MR 825837, DOI https://doi.org/10.2307/1971350
- Alexander Stokolos, Zygmund’s program: some partial solutions, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 5, 1439–1453 (English, with English and French summaries). MR 2172270
- A. Zygmund, A note on the differentiability of integrals, Colloq. Math. 16 (1967), 199–204. MR 210847, DOI https://doi.org/10.4064/cm-16-1-199-204
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 42B25
Retrieve articles in all journals with MSC (2010): 42B25
Additional Information
Guillermo Rey
Affiliation:
Citadel, 131 S Dearborn St, Chicago, Illinois 60603
MR Author ID:
1050866
ORCID:
0000-0001-8112-7262
Email:
guillermo.reyley@gmail.com
Received by editor(s):
April 4, 2020
Received by editor(s) in revised form:
May 25, 2020
Published electronically:
September 24, 2020
Communicated by:
Dmitriy Bilyk
Article copyright:
© Copyright 2020
American Mathematical Society