Characterization of nuclearity for Beurling–Björck spaces
HTML articles powered by AMS MathViewer
- by Andreas Debrouwere, Lenny Neyt and Jasson Vindas
- Proc. Amer. Math. Soc. 148 (2020), 5171-5180
- DOI: https://doi.org/10.1090/proc/15227
- Published electronically: September 18, 2020
- PDF | Request permission
Abstract:
We characterize the nuclearity of the Beurling–Björck spaces $\mathcal {S}^{(\omega )}_{(\eta )}(\mathbb {R}^d)$ and $\mathcal {S}^{\{\omega \}}_{\{\eta \}}(\mathbb {R}^d)$ in terms of the defining weight functions $\omega$ and $\eta$.References
- Klaus D. Bierstedt, An introduction to locally convex inductive limits, Functional analysis and its applications (Nice, 1986) ICPAM Lecture Notes, World Sci. Publishing, Singapore, 1988, pp. 35–133. MR 979516, DOI 10.1007/s13116-009-0018-2
- Göran Björck, Linear partial differential operators and generalized distributions, Ark. Mat. 6 (1966), 351–407 (1966). MR 203201, DOI 10.1007/BF02590963
- Chiara Boiti, David Jornet, and Alessandro Oliaro, The Gabor wave front set in spaces of ultradifferentiable functions, Monatsh. Math. 188 (2019), no. 2, 199–246. MR 3900031, DOI 10.1007/s00605-018-1242-3
- C. Boiti, D. Jornet, and A. Oliaro, About the nuclearity of $\mathcal {S}_{(M_p)}$ and $\mathcal {S}_{\omega }$. In: Boggiatto P. et al. (eds), Advances in microlocal and time-frequency analysis, pp. 121–129. Applied and Numerical Harmonic Analysis, Birkhäuser, Cham, 2020. DOI 10.1007/978-3-030-36138-9$\_$6
- C. Boiti, D. Jornet, A. Oliaro, and G. Schindl, Nuclearity of rapidly decreasing ultradifferentiable functions and time-frequency analysis, Collect. Math., in press, 2020. DOI 10.1007/s13348-020-00296-0
- R. W. Braun, R. Meise, and B. A. Taylor, Ultradifferentiable functions and Fourier analysis, Results Math. 17 (1990), no. 3-4, 206–237. MR 1052587, DOI 10.1007/BF03322459
- Soon-Yeong Chung, Dohan Kim, and Sungjin Lee, Characterization for Beurling-Björck space and Schwartz space, Proc. Amer. Math. Soc. 125 (1997), no. 11, 3229–3234. MR 1443817, DOI 10.1090/S0002-9939-97-04221-4
- I. M. Gel′fand and G. E. Shilov, Generalized functions. Vol. 3: Theory of differential equations, Academic Press, New York-London, 1967. Translated from the Russian by Meinhard E. Mayer. MR 0217416
- I. M. Gel′fand and G. E. Shilov, Generalized functions. Vol. 2. Spaces of fundamental and generalized functions, Academic Press, New York-London, 1968. Translated from the Russian by Morris D. Friedman, Amiel Feinstein and Christian P. Peltzer. MR 0230128
- Karlheinz Gröchenig and Georg Zimmermann, Spaces of test functions via the STFT, J. Funct. Spaces Appl. 2 (2004), no. 1, 25–53. MR 2027858, DOI 10.1155/2004/498627
- Morisuke Hasumi, Note on the $n$-dimensional tempered ultra-distributions, Tohoku Math. J. (2) 13 (1961), 94–104. MR 131759, DOI 10.2748/tmj/1178244354
- Victor Havin and Burglind Jöricke, The uncertainty principle in harmonic analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 28, Springer-Verlag, Berlin, 1994. MR 1303780, DOI 10.1007/978-3-642-78377-7
- I. I. Hirschman Jr., On the behaviour of Fourier transforms at infinity and on quasi-analytic classes of functions, Amer. J. Math. 72 (1950), 200–213. MR 32816, DOI 10.2307/2372147
- Lars Hörmander, A uniqueness theorem of Beurling for Fourier transform pairs, Ark. Mat. 29 (1991), no. 2, 237–240. MR 1150375, DOI 10.1007/BF02384339
- N. Levinson, Restrictions imposed by certain functions on their Fourier transforms, Duke Math. J. 6 (1940), 722–731. MR 2662
- Hans-Joachim Petzsche, Die Nuklearität der Ultradistributionsräume und der Satz vom Kern. I, Manuscripta Math. 24 (1978), no. 2, 133–171 (German, with English summary). MR 492653, DOI 10.1007/BF01310050
- François Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York-London, 1967. MR 0225131
Bibliographic Information
- Andreas Debrouwere
- Affiliation: Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Krijgslaan 281, 9000 Gent, Belgium
- MR Author ID: 1154620
- Email: andreas.debrouwere@UGent.be
- Lenny Neyt
- Affiliation: Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Krijgslaan 281, 9000 Gent, Belgium
- MR Author ID: 1337474
- ORCID: 0000-0001-8116-1487
- Email: lenny.neyt@UGent.be
- Jasson Vindas
- Affiliation: Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Krijgslaan 281, 9000 Gent, Belgium
- MR Author ID: 795097
- ORCID: 0000-0002-3789-8577
- Email: jasson.vindas@UGent.be
- Received by editor(s): August 28, 2019
- Received by editor(s) in revised form: February 15, 2020
- Published electronically: September 18, 2020
- Additional Notes: The first author was supported by FWO-Vlaanderen through the postdoctoral grant 12T0519N
The second author gratefully acknowledges support by Ghent University through the BOF-grant 01J11615.
The third author was supported by Ghent University through the BOF-grants 01J11615 and 01J04017. - Communicated by: Ariel Barton
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 5171-5180
- MSC (2010): Primary 46E10, 46F05; Secondary 42B10, 46A11, 81S30
- DOI: https://doi.org/10.1090/proc/15227
- MathSciNet review: 4163830