## Characterization of nuclearity for Beurling–Björck spaces

HTML articles powered by AMS MathViewer

- by Andreas Debrouwere, Lenny Neyt and Jasson Vindas PDF
- Proc. Amer. Math. Soc.
**148**(2020), 5171-5180 Request permission

## Abstract:

We characterize the nuclearity of the Beurling–Björck spaces $\mathcal {S}^{(\omega )}_{(\eta )}(\mathbb {R}^d)$ and $\mathcal {S}^{\{\omega \}}_{\{\eta \}}(\mathbb {R}^d)$ in terms of the defining weight functions $\omega$ and $\eta$.## References

- Klaus D. Bierstedt,
*An introduction to locally convex inductive limits*, Functional analysis and its applications (Nice, 1986) ICPAM Lecture Notes, World Sci. Publishing, Singapore, 1988, pp. 35–133. MR**979516**, DOI 10.1007/s13116-009-0018-2 - Göran Björck,
*Linear partial differential operators and generalized distributions*, Ark. Mat.**6**(1966), 351–407 (1966). MR**203201**, DOI 10.1007/BF02590963 - Chiara Boiti, David Jornet, and Alessandro Oliaro,
*The Gabor wave front set in spaces of ultradifferentiable functions*, Monatsh. Math.**188**(2019), no. 2, 199–246. MR**3900031**, DOI 10.1007/s00605-018-1242-3 - C. Boiti, D. Jornet, and A. Oliaro,
*About the nuclearity of $\mathcal {S}_{(M_p)}$ and $\mathcal {S}_{\omega }$*. In: Boggiatto P. et al. (eds), Advances in microlocal and time-frequency analysis, pp. 121–129. Applied and Numerical Harmonic Analysis, Birkhäuser, Cham, 2020. DOI 10.1007/978-3-030-36138-9$\_$6 - C. Boiti, D. Jornet, A. Oliaro, and G. Schindl,
*Nuclearity of rapidly decreasing ultradifferentiable functions and time-frequency analysis,*Collect. Math., in press, 2020. DOI 10.1007/s13348-020-00296-0 - R. W. Braun, R. Meise, and B. A. Taylor,
*Ultradifferentiable functions and Fourier analysis*, Results Math.**17**(1990), no. 3-4, 206–237. MR**1052587**, DOI 10.1007/BF03322459 - Soon-Yeong Chung, Dohan Kim, and Sungjin Lee,
*Characterization for Beurling-Björck space and Schwartz space*, Proc. Amer. Math. Soc.**125**(1997), no. 11, 3229–3234. MR**1443817**, DOI 10.1090/S0002-9939-97-04221-4 - I. M. Gel′fand and G. E. Shilov,
*Generalized functions. Vol. 3: Theory of differential equations*, Academic Press, New York-London, 1967. Translated from the Russian by Meinhard E. Mayer. MR**0217416** - I. M. Gel′fand and G. E. Shilov,
*Generalized functions. Vol. 2. Spaces of fundamental and generalized functions*, Academic Press, New York-London, 1968. Translated from the Russian by Morris D. Friedman, Amiel Feinstein and Christian P. Peltzer. MR**0230128** - Karlheinz Gröchenig and Georg Zimmermann,
*Spaces of test functions via the STFT*, J. Funct. Spaces Appl.**2**(2004), no. 1, 25–53. MR**2027858**, DOI 10.1155/2004/498627 - Morisuke Hasumi,
*Note on the $n$-dimensional tempered ultra-distributions*, Tohoku Math. J. (2)**13**(1961), 94–104. MR**131759**, DOI 10.2748/tmj/1178244354 - Victor Havin and Burglind Jöricke,
*The uncertainty principle in harmonic analysis*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 28, Springer-Verlag, Berlin, 1994. MR**1303780**, DOI 10.1007/978-3-642-78377-7 - I. I. Hirschman Jr.,
*On the behaviour of Fourier transforms at infinity and on quasi-analytic classes of functions*, Amer. J. Math.**72**(1950), 200–213. MR**32816**, DOI 10.2307/2372147 - Lars Hörmander,
*A uniqueness theorem of Beurling for Fourier transform pairs*, Ark. Mat.**29**(1991), no. 2, 237–240. MR**1150375**, DOI 10.1007/BF02384339 - N. Levinson,
*Restrictions imposed by certain functions on their Fourier transforms*, Duke Math. J.**6**(1940), 722–731. MR**2662** - Hans-Joachim Petzsche,
*Die Nuklearität der Ultradistributionsräume und der Satz vom Kern. I*, Manuscripta Math.**24**(1978), no. 2, 133–171 (German, with English summary). MR**492653**, DOI 10.1007/BF01310050 - François Trèves,
*Topological vector spaces, distributions and kernels*, Academic Press, New York-London, 1967. MR**0225131**

## Additional Information

**Andreas Debrouwere**- Affiliation: Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Krijgslaan 281, 9000 Gent, Belgium
- MR Author ID: 1154620
- Email: andreas.debrouwere@UGent.be
**Lenny Neyt**- Affiliation: Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Krijgslaan 281, 9000 Gent, Belgium
- MR Author ID: 1337474
- ORCID: 0000-0001-8116-1487
- Email: lenny.neyt@UGent.be
**Jasson Vindas**- Affiliation: Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Krijgslaan 281, 9000 Gent, Belgium
- MR Author ID: 795097
- ORCID: 0000-0002-3789-8577
- Email: jasson.vindas@UGent.be
- Received by editor(s): August 28, 2019
- Received by editor(s) in revised form: February 15, 2020
- Published electronically: September 18, 2020
- Additional Notes: The first author was supported by FWO-Vlaanderen through the postdoctoral grant 12T0519N

The second author gratefully acknowledges support by Ghent University through the BOF-grant 01J11615.

The third author was supported by Ghent University through the BOF-grants 01J11615 and 01J04017. - Communicated by: Ariel Barton
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**148**(2020), 5171-5180 - MSC (2010): Primary 46E10, 46F05; Secondary 42B10, 46A11, 81S30
- DOI: https://doi.org/10.1090/proc/15227
- MathSciNet review: 4163830