Some generalizations on affine invariant points
HTML articles powered by AMS MathViewer
- by Natalia Jonard-Pérez
- Proc. Amer. Math. Soc. 148 (2020), 5299-5311
- DOI: https://doi.org/10.1090/proc/15229
- Published electronically: September 11, 2020
- PDF | Request permission
Abstract:
In this note we prove a more general (and topological) version of Grünbaum’s conjecture about affine invariant points. As an application of our result we show that if we consider the action of the group of similarities, Grünbaum’s conjecture remains valid in other families of convex sets (not necessarily convex bodies).References
- S. A. Antonjan, Retracts in categories of $G$-spaces, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 15 (1980), no. 5, 365–378, 417 (Russian, with English and Armenian summaries). MR 604847
- S. A. Antonyan, Equivariant generalization of Dugundji’s theorem, Mat. Zametki 38 (1985), no. 4, 608–616, 636 (Russian). MR 819426
- Sergey Antonian, An equivariant theory of retracts, Aspects of topology, London Math. Soc. Lecture Note Ser., vol. 93, Cambridge Univ. Press, Cambridge, 1985, pp. 251–269. MR 787832
- Sergey A. Antonyan, Extending equivariant maps into spaces with convex structure, Topology Appl. 153 (2005), no. 2-3, 261–275. MR 2175350, DOI 10.1016/j.topol.2003.09.015
- Sergey A. Antonyan and Natalia Jonard-Pérez, Equivariant selections of convex-valued maps, Topology Proc. 40 (2012), 227–238. MR 2854082
- Sergey A. Antonyan and Natalia Jonard-Pérez, Affine group acting on hyperspaces of compact convex subsets of $\Bbb R^n$, Fund. Math. 223 (2013), no. 2, 99–136. MR 3145542, DOI 10.4064/fm223-2-1
- Sergey A. Antonyan, Natalia Jonard-Pérez, and Saúl Juárez-Ordóñez, Hyperspaces of convex bodies of constant width. part B, Topology Appl. 196 (2015), no. part B, 347–361. MR 3430982, DOI 10.1016/j.topol.2014.05.027
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- D. van Dantzig and B. L. van der Waerden, Über metrisch homogene räume, Abh. Math. Sem. Univ. Hamburg 6 (1928), no. 1, 367–376 (German). MR 3069509, DOI 10.1007/BF02940622
- Bernardo González Merino and Natalia Jonard-Pérez, A pseudometric invariant under similarities in the hyperspace of non-degenerated compact convex sets of $\Bbb {R}^n$, Topology Appl. 194 (2015), 125–143. MR 3404607, DOI 10.1016/j.topol.2015.08.002
- Ryszard Engelking, General topology, 2nd ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author. MR 1039321
- Branko Grünbaum, Measures of symmetry for convex sets, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 233–270. MR 0156259
- Charles J. Himmelberg, Some theorems on equiconnected and locally equiconnected spaces, Trans. Amer. Math. Soc. 115 (1965), 43–53. MR 195038, DOI 10.1090/S0002-9947-1965-0195038-X
- Ivan Iurchenko, Affine invariant points and new constructions, J. Math. Anal. Appl. 445 (2017), no. 2, 1410–1416. MR 3545250, DOI 10.1016/j.jmaa.2016.08.011
- Natalia Jonard-Pérez, A short proof of Grünbaum’s conjecture about affine invariant points, Topology Appl. 204 (2016), 240–245. MR 3482720, DOI 10.1016/j.topol.2016.03.013
- P. A. Kučment, On the question of the affine-invariant points of convex bodies, Optimizacija 8(25) (1972), 48–51, 127 (Russian). MR 0350621
- P. Kuchment, On a problem concerning affine-invariant points of convex bodies, (English translation of \cite{Kuchment}), arXiv:1602.04377, 2016.
- Horst Martini, Luis Montejano, and Déborah Oliveros, Bodies of constant width, Birkhäuser/Springer, Cham, 2019. An introduction to convex geometry with applications. MR 3930585, DOI 10.1007/978-3-030-03868-7
- Mathieu Meyer, Carsten Schütt, and Elisabeth M. Werner, Affine invariant points, Israel J. Math. 208 (2015), no. 1, 163–192. MR 3416917, DOI 10.1007/s11856-015-1196-2
- Olaf Mordhorst, New results on affine invariant points, Israel J. Math. 219 (2017), no. 2, 529–548. MR 3649598, DOI 10.1007/s11856-017-1489-8
- Maria Moszyńska, Selected topics in convex geometry, Birkhäuser Boston, Inc., Boston, MA, 2006. Translated and revised from the 2001 Polish original. MR 2169492
- R. Palais, The classification of $G$-spaces, Memoirs of the American Mathematical Society, vol 36, American Mathematical Society, Providence, RI, 1960.
- Richard S. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. (2) 73 (1961), 295–323. MR 126506, DOI 10.2307/1970335
- Katsuro Sakai, Geometric aspects of general topology, Springer Monographs in Mathematics, Springer, Tokyo, 2013. MR 3099433, DOI 10.1007/978-4-431-54397-8
- Roger Webster, Convexity, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1994. MR 1443208
Bibliographic Information
- Natalia Jonard-Pérez
- Affiliation: Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
- ORCID: 0000-0003-1932-7815
- Email: nat@ciencias.unam.mx
- Received by editor(s): January 2, 2020
- Received by editor(s) in revised form: February 25, 2020
- Published electronically: September 11, 2020
- Additional Notes: The author was partially supported by grants IN115819 (PAPIIT, UNAM, México) and 252849 (CONACYT-SEP, México).
- Communicated by: Deane Yang
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 5299-5311
- MSC (2010): Primary 52A20, 54B20, 54H15, 57S20
- DOI: https://doi.org/10.1090/proc/15229
- MathSciNet review: 4163842