Approximation in Banach space representations of compact groups
Authors:
M. Filali and M. Sangani Monfared
Journal:
Proc. Amer. Math. Soc. 148 (2020), 5159-5170
MSC (2010):
Primary 43A77, 46H15, 43A20, 22D10, 22D20
DOI:
https://doi.org/10.1090/proc/15247
Published electronically:
September 11, 2020
MathSciNet review:
4163829
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let $\pi \colon G \longrightarrow \mathcal B(E)$ be a continuous representation of a compact group $G$ on a Banach space $E$. We prove that the set of vectors $\pi (h)x$, as $h$ runs through the set $T(G)$ of all trigonometric polynomials on $G$, and $x$ runs through $E$, spans an invariant dense linear subspace of $E$. We prove the existence of a topological direct sum decomposition $E=\bigoplus _{\theta \in \widehat G}E_\theta$ for $E$, where each $E_\theta$ is a closed $\pi$-invariant subspace of $E$. If $\lambda _p\colon M(G)\longrightarrow \mathcal B(L^p(G))$, $p\in (1,\infty )$, is the left regular representation of the measure algebra $M(G)$ and $B\subset PM_p(G)$ is a homogeneous Banach space, we show that $B\cap \lambda _p(T(G))$ is norm dense in $B$. Since Hilbert space techniques are not available, new machinery is developed in the paper for the proofs.
- Nicolas Bourbaki, Integration. II. Chapters 7–9, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2004. Translated from the 1963 and 1969 French originals by Sterling K. Berberian. MR 2098271
- Antoine Derighetti, Convolution operators on groups, Lecture Notes of the Unione Matematica Italiana, vol. 11, Springer, Heidelberg; UMI, Bologna, 2011. MR 2809956
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628
- K. de Leeuw, Linear spaces with a compact group of operators, Illinois J. Math. 2 (1958), 367–377. MR 102023
- Alessandro Figà-Talamanca, Translation invariant operators in $L^{p}$, Duke Math. J. 32 (1965), 495–501. MR 181869
- Gerald B. Folland, A course in abstract harmonic analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397028
- F. Ghahramani and A. T. M. Lau, Weak amenability of certain classes of Banach algebras without bounded approximate identities, Math. Proc. Cambridge Philos. Soc. 133 (2002), no. 2, 357–371. MR 1912407, DOI https://doi.org/10.1017/S0305004102005960
- Fereidoun Ghahramani and Anthony To-Ming Lau, Approximate weak amenability, derivations and Arens regularity of Segal algebras, Studia Math. 169 (2005), no. 2, 189–205. MR 2140455, DOI https://doi.org/10.4064/sm169-2-6
- Anna Hurevitsch, Unitary representation in Hilbert space of a compact topological group, Rec. Math. [Mat. Sbornik] N. S. 13(55) (1943), 79–86 (English, with Russian summary). MR 0011309
- Carl Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 3, 91–123 (English, with French summary). MR 355482
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
- Eberhard Kaniuth and Anthony To-Ming Lau, Fourier and Fourier-Stieltjes algebras on locally compact groups, Mathematical Surveys and Monographs, vol. 231, American Mathematical Society, Providence, RI, 2018. MR 3821506
- Yitzhak Katznelson, An introduction to harmonic analysis, 3rd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004. MR 2039503
- F. Peter and H. Weyl, Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe, Math. Ann. 97 (1927), no. 1, 737–755 (German). MR 1512386, DOI https://doi.org/10.1007/BF01447892
- Hans Reiter, $L^{1}$-algebras and Segal algebras, Lecture Notes in Mathematics, Vol. 231, Springer-Verlag, Berlin-New York, 1971. MR 0440280
- Kôji Shiga, Representations of a compact group on a Banach space, J. Math. Soc. Japan 7 (1955), 224–248. MR 82624, DOI https://doi.org/10.2969/jmsj/00730224
- G. E. Šilov, Homogeneous rings of functions, Uspehi Matem. Nauk (N.S.) 6 (1951), no. 1(41), 91–137 (Russian). MR 0042617
- J. A. Ward, Characterization of homogeneous spaces and their norms, Pacific J. Math. 114 (1984), no. 2, 481–495. MR 757513
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 43A77, 46H15, 43A20, 22D10, 22D20
Retrieve articles in all journals with MSC (2010): 43A77, 46H15, 43A20, 22D10, 22D20
Additional Information
M. Filali
Affiliation:
Department of Mathematical Sciences, University of Oulu, Oulu 90014, Finland
MR Author ID:
292620
Email:
mahmoud.filali@oulu.fi
M. Sangani Monfared
Affiliation:
Department of Mathematics and Statistics, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
MR Author ID:
711290
Email:
monfared@uwindsor.ca
Keywords:
Compact groups,
Banach space representations,
homogeneous Banach spaces,
approximation by trigonometric polynomials,
measure algebra,
pseudo measures.
Received by editor(s):
February 10, 2020
Published electronically:
September 11, 2020
Additional Notes:
The first author is grateful for the hospitality and partial support from the Department of Mathematics and Statistics at Windsor University.
The second author was supported by an NSERC grant.
Communicated by:
Adrian Ioana
Article copyright:
© Copyright 2020
American Mathematical Society