Approximation in Banach space representations of compact groups
HTML articles powered by AMS MathViewer
- by M. Filali and M. Sangani Monfared
- Proc. Amer. Math. Soc. 148 (2020), 5159-5170
- DOI: https://doi.org/10.1090/proc/15247
- Published electronically: September 11, 2020
- PDF | Request permission
Abstract:
Let $\pi \colon G \longrightarrow \mathcal B(E)$ be a continuous representation of a compact group $G$ on a Banach space $E$. We prove that the set of vectors $\pi (h)x$, as $h$ runs through the set $T(G)$ of all trigonometric polynomials on $G$, and $x$ runs through $E$, spans an invariant dense linear subspace of $E$. We prove the existence of a topological direct sum decomposition $E=\bigoplus _{\theta \in \widehat G}E_\theta$ for $E$, where each $E_\theta$ is a closed $\pi$-invariant subspace of $E$. If $\lambda _p\colon M(G)\longrightarrow \mathcal B(L^p(G))$, $p\in (1,\infty )$, is the left regular representation of the measure algebra $M(G)$ and $B\subset PM_p(G)$ is a homogeneous Banach space, we show that $B\cap \lambda _p(T(G))$ is norm dense in $B$. Since Hilbert space techniques are not available, new machinery is developed in the paper for the proofs.References
- Nicolas Bourbaki, Integration. II. Chapters 7–9, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2004. Translated from the 1963 and 1969 French originals by Sterling K. Berberian. MR 2098271
- Antoine Derighetti, Convolution operators on groups, Lecture Notes of the Unione Matematica Italiana, vol. 11, Springer, Heidelberg; UMI, Bologna, 2011. MR 2809956, DOI 10.1007/978-3-642-20656-6
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628
- K. de Leeuw, Linear spaces with a compact group of operators, Illinois J. Math. 2 (1958), 367–377. MR 102023
- Alessandro Figà-Talamanca, Translation invariant operators in $L^{p}$, Duke Math. J. 32 (1965), 495–501. MR 181869
- Gerald B. Folland, A course in abstract harmonic analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397028
- F. Ghahramani and A. T. M. Lau, Weak amenability of certain classes of Banach algebras without bounded approximate identities, Math. Proc. Cambridge Philos. Soc. 133 (2002), no. 2, 357–371. MR 1912407, DOI 10.1017/S0305004102005960
- Fereidoun Ghahramani and Anthony To-Ming Lau, Approximate weak amenability, derivations and Arens regularity of Segal algebras, Studia Math. 169 (2005), no. 2, 189–205. MR 2140455, DOI 10.4064/sm169-2-6
- Anna Hurevitsch, Unitary representation in Hilbert space of a compact topological group, Rec. Math. [Mat. Sbornik] N.S. 13(55) (1943), 79–86 (English, with Russian summary). MR 0011309
- Carl Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 3, 91–123 (English, with French summary). MR 355482
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
- Eberhard Kaniuth and Anthony To-Ming Lau, Fourier and Fourier-Stieltjes algebras on locally compact groups, Mathematical Surveys and Monographs, vol. 231, American Mathematical Society, Providence, RI, 2018. MR 3821506, DOI 10.1090/surv/231
- Yitzhak Katznelson, An introduction to harmonic analysis, 3rd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004. MR 2039503, DOI 10.1017/CBO9781139165372
- F. Peter and H. Weyl, Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe, Math. Ann. 97 (1927), no. 1, 737–755 (German). MR 1512386, DOI 10.1007/BF01447892
- Hans Reiter, $L^{1}$-algebras and Segal algebras, Lecture Notes in Mathematics, Vol. 231, Springer-Verlag, Berlin-New York, 1971. MR 0440280
- Kôji Shiga, Representations of a compact group on a Banach space, J. Math. Soc. Japan 7 (1955), 224–248. MR 82624, DOI 10.2969/jmsj/00730224
- G. E. Šilov, Homogeneous rings of functions, Uspehi Matem. Nauk (N.S.) 6 (1951), no. 1(41), 91–137 (Russian). MR 0042617
- J. A. Ward, Characterization of homogeneous spaces and their norms, Pacific J. Math. 114 (1984), no. 2, 481–495. MR 757513
Bibliographic Information
- M. Filali
- Affiliation: Department of Mathematical Sciences, University of Oulu, Oulu 90014, Finland
- MR Author ID: 292620
- Email: mahmoud.filali@oulu.fi
- M. Sangani Monfared
- Affiliation: Department of Mathematics and Statistics, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
- MR Author ID: 711290
- Email: monfared@uwindsor.ca
- Received by editor(s): February 10, 2020
- Published electronically: September 11, 2020
- Additional Notes: The first author is grateful for the hospitality and partial support from the Department of Mathematics and Statistics at Windsor University.
The second author was supported by an NSERC grant. - Communicated by: Adrian Ioana
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 148 (2020), 5159-5170
- MSC (2010): Primary 43A77, 46H15, 43A20, 22D10, 22D20
- DOI: https://doi.org/10.1090/proc/15247
- MathSciNet review: 4163829