Planar algebras associated to Latin squares are of subgroup-group-type
HTML articles powered by AMS MathViewer
- by Vijay Kodiyalam and Sruthy Murali
- Proc. Amer. Math. Soc. 149 (2021), 163-172
- DOI: https://doi.org/10.1090/proc/15073
- Published electronically: October 16, 2020
- PDF | Request permission
Abstract:
Latin squares naturally yield planar subalgebras of the spin planar algebra. We show that all of these are of subgroup-group-type.References
- Ved Prakash Gupta, Planar algebra of the subgroup-subfactor, Proc. Indian Acad. Sci. Math. Sci. 118 (2008), no. 4, 583–612. MR 2511128, DOI 10.1007/s12044-008-0046-0
- Vaughan F. R. Jones, Planar algebras, arXiv:math/9909027, 1999.
- Vaughan F. R. Jones, Scott Morrison, and Noah Snyder, The classification of subfactors of index at most 5, Bull. Amer. Math. Soc. (N.S.) 51 (2014), no. 2, 277–327. MR 3166042, DOI 10.1090/S0273-0979-2013-01442-3
- Vijay Kodiyalam, Sruthymurali, Sohan Lal Saini, and V. S. Sunder, On a presentation of the spin planar algebra, Proc. Indian Acad. Sci. Math. Sci. 129 (2019), no. 2, Paper No. 27, 11. MR 3922286, DOI 10.1007/s12044-019-0472-1
- Vijay Kodiyalam, Sruthy Murali, and V. S. Sunder, Planar algebras, quantum information theory and subfactors, arXiv1912.07228 [math.OA], 2019.
- Brendan McKay, Combinatorial data page, https://users.cecs.anu.edu.au/~bdm/data/latin.html.
- Benjamin Musto and Jamie Vicary, Quantum Latin squares and unitary error bases, Quantum Inf. Comput. 16 (2016), no. 15-16, 1318–1332. MR 3616029, DOI 10.26421/QIC16.15-16-4
- David J. Reutter and Jamie Vicary, Biunitary constructions in quantum information, High. Struct. 3 (2019), no. 1, 109–154. MR 3939047, DOI 10.21136/HS.2019.04
Bibliographic Information
- Vijay Kodiyalam
- Affiliation: The Institute of Mathematical Sciences, Chennai, India
- MR Author ID: 321352
- Email: vijay@imsc.res.in
- Sruthy Murali
- Affiliation: The Institute of Mathematical Sciences, Chennai, India
- Email: sruthym@imsc.res.in
- Received by editor(s): December 19, 2019
- Received by editor(s) in revised form: January 31, 2020
- Published electronically: October 16, 2020
- Communicated by: Adrian Ioana
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 163-172
- MSC (2010): Primary 46L37
- DOI: https://doi.org/10.1090/proc/15073
- MathSciNet review: 4172594