Weighted Alexandrov–Fenchel inequalities in hyperbolic space and a conjecture of Ge, Wang, and Wu
HTML articles powered by AMS MathViewer
- by Frederico Girão, Diego Pinheiro, Neilha M. Pinheiro and Diego Rodrigues
- Proc. Amer. Math. Soc. 149 (2021), 369-382
- DOI: https://doi.org/10.1090/proc/15127
- Published electronically: October 16, 2020
- PDF | Request permission
Abstract:
We consider a conjecture made by Ge, Wang, and Wu regarding weighted Alexandrov–Fenchel inequalities for horospherically convex hypersurfaces in hyperbolic space (a bound, for some physically motivated weight function, of the weighted integral of the $k$th mean curvature in terms of the area of the hypersurface). We prove an inequality very similar to the conjectured one. Moreover, when $k$ is zero and the ambient space has dimension three, we give a counterexample to the conjectured inequality.References
- A. Alexandroff, Über die Oberflächenfunktion eines konvexen Körpers. (Bemerkung zur Arbeit “Zur Theorie der gemischten Volumina von konvexen Körpern”), Rec. Math. N.S. [Mat. Sbornik] 6(48) (1939), 167–174 (Russian, with German summary). MR 0001597
- A. Alexandroff, Zur Theorie der gemischten Volumina von konvexen Körpern III. Die Erweiterung zweier Lehrsätze Minkowskis über die konvexen Polyeder auf die beliebigen konvexen Körper., Rec. Math. Moscou, n. Ser. 3 (1938), 27–46 (Russian).
- Simon Brendle, Pei-Ken Hung, and Mu-Tao Wang, A Minkowski inequality for hypersurfaces in the anti–de Sitter–Schwarzschild manifold, Comm. Pure Appl. Math. 69 (2016), no. 1, 124–144. MR 3433631, DOI 10.1002/cpa.21556
- Mattias Dahl, Romain Gicquaud, and Anna Sakovich, Penrose type inequalities for asymptotically hyperbolic graphs, Ann. Henri Poincaré 14 (2013), no. 5, 1135–1168. MR 3070749, DOI 10.1007/s00023-012-0218-4
- Levi Lopes de Lima and Frederico Girão, The ADM mass of asymptotically flat hypersurfaces, Trans. Amer. Math. Soc. 367 (2015), no. 9, 6247–6266. MR 3356936, DOI 10.1090/S0002-9947-2014-05902-3
- Levi Lopes de Lima and Frederico Girão, An Alexandrov-Fenchel-type inequality in hyperbolic space with an application to a Penrose inequality, Ann. Henri Poincaré 17 (2016), no. 4, 979–1002. MR 3472630, DOI 10.1007/s00023-015-0414-0
- Alexandre de Sousa and Frederico Girão, The Gauss-Bonnet-Chern mass of higher-codimension graphs, Pacific J. Math. 298 (2019), no. 1, 201–216. MR 3910054, DOI 10.2140/pjm.2019.298.201
- Yuxin Ge, Guofang Wang, and Jie Wu, Hyperbolic Alexandrov-Fenchel quermassintegral inequalities I, arXiv e-prints (2013), arXiv:1303.1714.
- Yuxin Ge, Guofang Wang, and Jie Wu, Hyperbolic Alexandrov-Fenchel quermassintegral inequalities II, J. Differential Geom. 98 (2014), no. 2, 237–260. MR 3263518
- Yuxin Ge, Guofang Wang, and Jie Wu, A new mass for asymptotically flat manifolds, Adv. Math. 266 (2014), 84–119. MR 3262355, DOI 10.1016/j.aim.2014.08.006
- Yuxin Ge, Guofang Wang, and Jie Wu, The GBC mass for asymptotically hyperbolic manifolds, Math. Z. 281 (2015), no. 1-2, 257–297. MR 3384870, DOI 10.1007/s00209-015-1483-y
- Frederico Girão and Diego Rodrigues, Weighted geometric inequalities for hypersurfaces in sub-static manifolds, Bulletin of the London Mathematical Society 52 (2020), no. 1, 121–136.
- Pengfei Guan and Junfang Li, The quermassintegral inequalities for $k$-convex starshaped domains, Adv. Math. 221 (2009), no. 5, 1725–1732. MR 2522433, DOI 10.1016/j.aim.2009.03.005
- R. R. Hall, A class of isoperimetric inequalities, J. Analyse Math. 45 (1985), 169–180. MR 833410, DOI 10.1007/BF02792548
- Yingxiang Hu, Haizhong Li, and Yong Wei, Locally constrained curvature flows and geometric inequalities in hyperbolic space, arXiv e-prints (2020), arXiv:2002.10643.
- Gerhard Huisken, Evolution of hypersurfaces by their curvature in Riemannian manifolds, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), 1998, pp. 349–360. MR 1648085
- Mau-Kwong George Lam, The Graph Cases of the Riemannian Positive Mass and Penrose Inequalities in All Dimensions, ProQuest LLC, Ann Arbor, MI, 2011. Thesis (Ph.D.)–Duke University. MR 2873434
- Haizhong Li, Yong Wei, and Changwei Xiong, The Gauss-Bonnet-Chern mass for graphic manifolds, Ann. Global Anal. Geom. 45 (2014), no. 4, 251–266. MR 3180948, DOI 10.1007/s10455-013-9399-4
- Haizhong Li, Yong Wei, and Changwei Xiong, A geometric inequality on hypersurface in hyperbolic space, Adv. Math. 253 (2014), 152–162. MR 3148549, DOI 10.1016/j.aim.2013.12.003
- Carlo Mantegazza, Lecture notes on mean curvature flow, Progress in Mathematics, vol. 290, Birkhäuser/Springer Basel AG, Basel, 2011. MR 2815949, DOI 10.1007/978-3-0348-0145-4
- H. Mirandola and F. Vitório, The positive mass theorem and Penrose inequality for graphical manifolds, Comm. Anal. Geom. 23 (2015), no. 2, 273–292. MR 3298670, DOI 10.4310/CAG.2015.v23.n2.a2
- Horst Sachs, Über eine Klasse isoperimetrischer Probleme. I, II, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 8 (1958/59), 121–126, 127–134 (German). MR 108770
- Horst Sachs, Ungleichungen für Umfang, Flächeninhalt und Trägheitsmoment konvexer Kurven, Acta Math. Acad. Sci. Hungar. 11 (1960), 103–115 (German, with Russian summary). MR 140002, DOI 10.1007/BF02020628
Bibliographic Information
- Frederico Girão
- Affiliation: Departamento de Matemática, Universidade Federal do Ceará, Fortaleza 60455-760, Brazil
- ORCID: 0000-0002-4418-2737
- Email: fred@mat.ufc.br
- Diego Pinheiro
- Affiliation: Departamento de Matemática, Universidade Federal do Ceará, Fortaleza 60455-760, Brazil
- Email: diegodsp01@gmail.com
- Neilha M. Pinheiro
- Affiliation: Departamento de Matemática, Universidade Federal do Amazonas, Manaus 69067-005, Brazil
- MR Author ID: 1244382
- Email: neilha@ufam.edu.br
- Diego Rodrigues
- Affiliation: Campus de Quixadá, Instituto Federal do Ceará, Quixadá 63902-580, Brazil
- ORCID: 0000-0002-1710-8013
- Email: diego.sousa.ismart@gmail.com
- Received by editor(s): June 24, 2019
- Received by editor(s) in revised form: April 6, 2020
- Published electronically: October 16, 2020
- Additional Notes: The first author was partially supported by CNPq, grant number 306196/2016-6, and by FUNCAP, grant number 00068.01.00/15. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.
- Communicated by: Jia-Ping Wang
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 369-382
- MSC (2020): Primary 51M16; Secondary 53E10, 53A35
- DOI: https://doi.org/10.1090/proc/15127
- MathSciNet review: 4172612