Cheeger constants of hyperbolic reflection groups and Maass cusp forms of small eigenvalues
Authors:
Brian A. Benson, Grant S. Lakeland and Holger Then
Journal:
Proc. Amer. Math. Soc. 149 (2021), 417-438
MSC (2010):
Primary 57M50; Secondary 58C40
DOI:
https://doi.org/10.1090/proc/15152
Published electronically:
October 9, 2020
MathSciNet review:
4172617
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We compute the Cheeger constants of a collection of hyperbolic surfaces corresponding to maximal non-cocompact arithmetic Fuchsian groups, and to subgroups which are the rotation subgroup of maximal reflection groups. The Cheeger constants are geometric quantities, but relate to the smallest eigenvalues of Maass cusp forms. From geometrical considerations, we find evidence for the existence of small eigenvalues. We search for these small eigenvalues and compute the corresponding Maass cusp forms numerically.
- Colin Adams and Frank Morgan, Isoperimetric curves on hyperbolic surfaces, Proc. Amer. Math. Soc. 127 (1999), no. 5, 1347–1356. MR 1487351, DOI https://doi.org/10.1090/S0002-9939-99-04778-4
- Ian Agol, Finiteness of arithmetic Kleinian reflection groups, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 951–960. MR 2275630
- Ian Agol, Mikhail Belolipetsky, Peter Storm, and Kevin Whyte, Finiteness of arithmetic hyperbolic reflection groups, Groups Geom. Dyn. 2 (2008), no. 4, 481–498. MR 2442945, DOI https://doi.org/10.4171/GGD/47
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777
- Mikhail Belolipetsky, Finiteness theorems for congruence reflection groups, Transform. Groups 16 (2011), no. 4, 939–954. MR 2852486, DOI https://doi.org/10.1007/s00031-011-9156-3
- Brian A. Benson, The Cheeger constant, isoperimetric problems, and hyperbolic surfaces, Preprint, arXiv:1509.08993, (2015).
- Andrew R. Booker, Andreas Strömbergsson, and Holger Then, Bounds and algorithms for the $K$-Bessel function of imaginary order, LMS J. Comput. Math. 16 (2013), 78–108. MR 3044476, DOI https://doi.org/10.1112/S1461157013000028
- Peter Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 2, 213–230. MR 683635
- Jeff Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Papers dedicated to Salomon Bochner, 1969) Princeton Univ. Press, Princeton, N. J., 1970, pp. 195–199. MR 0402831
- E. Hecke, Über das Verhalten von und ähnlichen Funktionen bei Modulsubstitutionen, J. Reine Angew. Math. 157 (1927), 159–170 (German). MR 1581115, DOI https://doi.org/10.1515/crll.1927.157.159
- Dennis A. Hejhal, On eigenfunctions of the Laplacian for Hecke triangle groups, Emerging applications of number theory (Minneapolis, MN, 1996) IMA Vol. Math. Appl., vol. 109, Springer, New York, 1999, pp. 291–315. MR 1691537, DOI https://doi.org/10.1007/978-1-4612-1544-8_11
- Dennis A. Hejhal and Andreas Strömbergsson, On quantum chaos and Maass waveforms of CM-type, Found. Phys. 31 (2001), no. 3, 519–533. Invited papers dedicated to Martin C. Gutzwiller, Part IV. MR 1839791, DOI https://doi.org/10.1023/A%3A1017521729782
- Heinz Helling, Bestimmung der Kommensurabilitätsklasse der Hilbertschen Modulgruppe, Math. Z. 92 (1966), 269–280 (German). MR 228437, DOI https://doi.org/10.1007/BF01112194
- Heinz Helling, On the commensurability class of the rational modular group, J. London Math. Soc. (2) 2 (1970), 67–72. MR 277620, DOI https://doi.org/10.1112/jlms/s2-2.1.67
- Henry H. Kim, Functoriality for the exterior square of ${\rm GL}_4$ and the symmetric fourth of ${\rm GL}_2$, J. Amer. Math. Soc. 16 (2003), no. 1, 139–183. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak. MR 1937203, DOI https://doi.org/10.1090/S0894-0347-02-00410-1
- Grant S. Lakeland, Arithmetic reflection groups and congruence subgroups, Ph.D. thesis, The University of Texas at Austin, 2012.
- D. D. Long, C. Maclachlan, and A. W. Reid, Arithmetic Fuchsian groups of genus zero, Pure Appl. Math. Q. 2 (2006), no. 2, Special Issue: In honor of John H. Coates., 569–599. MR 2251482, DOI https://doi.org/10.4310/PAMQ.2006.v2.n2.a9
- Hans Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 121 (1949), 141–183 (German). MR 31519, DOI https://doi.org/10.1007/BF01329622
- V. V. Nikulin, Finiteness of the number of arithmetic groups generated by reflections in Lobachevskiĭ spaces, Izv. Ross. Akad. Nauk Ser. Mat. 71 (2007), no. 1, 55–60 (Russian, with Russian summary); English transl., Izv. Math. 71 (2007), no. 1, 53–56. MR 2477273, DOI https://doi.org/10.1070/IM2007v071n01ABEH002349
- Walter Roelcke, Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene, I, Math. Ann. 167 (1966), no. 4, 292–337 (German). MR 1513277, DOI https://doi.org/10.1007/BF01364540
- W. Roelcke, Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. II, Math. Annalen 168 (1967), 261–324.
- Björn Selander and Andreas Strömbergsson, Sextic coverings of genus two which are branched at three points, 2002, preprint, http://www2.math.uu.se/~astrombe/papers/papers.html.
- Atle Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, R.I., 1965, pp. 1–15. MR 0182610
- Andreas Strömbergsson, A pullback algorithm for general (cofinite) Fuchsian groups, 2000, http://www2.math.uu.se/~astrombe/papers/pullback.ps.
- Holger Then, Maass cusp forms for large eigenvalues, Math. Comp. 74 (2005), no. 249, 363–381. MR 2085897, DOI https://doi.org/10.1090/S0025-5718-04-01658-8
- H. Then, Large sets of consecutive Maass forms and fluctuations in the Weyl remainder, preprint, arXiv:1212.3149, (2012).
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 57M50, 58C40
Retrieve articles in all journals with MSC (2010): 57M50, 58C40
Additional Information
Brian A. Benson
Affiliation:
Department of Mathematics, University of California, Riverside, 900 University Avenue, Riverside, California 92521
MR Author ID:
892840
Email:
bbenson@ucr.edu
Grant S. Lakeland
Affiliation:
Department of Mathematics & Computer Science, Eastern Illinois University, 600 Lincoln Avenue, Charleston, Illinois 61920
MR Author ID:
984963
Email:
gslakeland@eiu.edu
Holger Then
Affiliation:
Freie Waldorfschule Augsburg, Dr.-Schmelzing-Straße 52, 86169 Augsburg, Germany
MR Author ID:
742378
ORCID:
0000-0002-0368-639X
Email:
holger.then@gmx.de
Received by editor(s):
August 9, 2019
Received by editor(s) in revised form:
April 23, 2020, and April 25, 2020
Published electronically:
October 9, 2020
Communicated by:
David Futer
Article copyright:
© Copyright 2020
American Mathematical Society