## Structure of multicorrelation sequences with integer part polynomial iterates along primes

HTML articles powered by AMS MathViewer

- by Andreas Koutsogiannis, Anh N. Le, Joel Moreira and Florian K. Richter PDF
- Proc. Amer. Math. Soc.
**149**(2021), 209-216 Request permission

## Abstract:

Let $T$ be a measure-preserving $\mathbb {Z}^\ell$-action on the probability space $(X,{\mathcal B},\mu ),$ let $q_1,\dots ,q_m\colon \mathbb {R}\to \mathbb {R}^\ell$ be vector polynomials, and let $f_0,\dots ,f_m \in L^\infty (X)$. For any $\epsilon > 0$ and multicorrelation sequences of the form $\alpha (n) =\int _Xf_0\cdot T^{ \lfloor q_1(n) \rfloor }f_1\cdots T^{ \lfloor q_m(n) \rfloor }f_m\;d\mu$ we show that there exists a nil- sequence $\psi$ for which $\lim _{N - M \to \infty } \frac {1}{N-M} \sum _{n=M}^{N-1} |\alpha (n) - \psi (n)| \leq \epsilon$ and $\lim _{N \to \infty } \frac {1}{\pi (N)} \sum _{p \in \mathbb {P}\cap [1,N]} |\alpha (p) - \psi (p)| \leq \epsilon .$ This result simultaneously generalizes previous results of Frantzikinakis and the authors.## References

- Vitaly Bergelson, Bernard Host, and Bryna Kra,
*Multiple recurrence and nilsequences*, Invent. Math.**160**(2005), no. 2, 261–303. With an appendix by Imre Ruzsa. MR**2138068**, DOI 10.1007/s00222-004-0428-6 - Nikos Frantzikinakis,
*Multiple correlation sequences and nilsequences*, Invent. Math.**202**(2015), no. 2, 875–892. MR**3418246**, DOI 10.1007/s00222-015-0579-7 - Nikos Frantzikinakis,
*Some open problems on multiple ergodic averages*, Bull. Hellenic Math. Soc.**60**(2016), 41–90. MR**3613710** - Nikos Frantzikinakis and Bernard Host,
*Weighted multiple ergodic averages and correlation sequences*, Ergodic Theory Dynam. Systems**38**(2018), no. 1, 81–142. MR**3742539**, DOI 10.1017/etds.2016.19 - Harry Furstenberg,
*Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions*, J. Analyse Math.**31**(1977), 204–256. MR**498471**, DOI 10.1007/BF02813304 - Inger Johanne Håland,
*Uniform distribution of generalized polynomials*, J. Number Theory**45**(1993), no. 3, 327–366. MR**1247389**, DOI 10.1006/jnth.1993.1082 - Bernard Host and Bryna Kra,
*Nonconventional ergodic averages and nilmanifolds*, Ann. of Math. (2)**161**(2005), no. 1, 397–488. MR**2150389**, DOI 10.4007/annals.2005.161.397 - Bernard Host and Bryna Kra,
*Nilpotent structures in ergodic theory*, Mathematical Surveys and Monographs, vol. 236, American Mathematical Society, Providence, RI, 2018. MR**3839640**, DOI 10.1090/surv/236 - Bernard Host and Alejandro Maass,
*Nilsystèmes d’ordre 2 et parallélépipèdes*, Bull. Soc. Math. France**135**(2007), no. 3, 367–405 (French, with English and French summaries). MR**2430186**, DOI 10.24033/bsmf.2539 - Andreas Koutsogiannis,
*Closest integer polynomial multiple recurrence along shifted primes*, Ergodic Theory Dynam. Systems**38**(2018), no. 2, 666–685. MR**3774837**, DOI 10.1017/etds.2016.40 - Andreas Koutsogiannis,
*Integer part polynomial correlation sequences*, Ergodic Theory Dynam. Systems**38**(2018), no. 4, 1525–1542. MR**3789175**, DOI 10.1017/etds.2016.67 - Anh Ngoc Le,
*Nilsequences and multiple correlations along subsequences*, Ergodic Theory Dynam. Systems**40**(2020), no. 6, 1634–1654. MR**4092860**, DOI 10.1017/etds.2018.110 - Anh N. Le, Joel Moreira, and Florian K. Richter,
*A decomposition of multicorrelation sequences for commuting transformations along primes*, arXiv:2001.11523, 2020. - A. Leibman,
*Multiple polynomial correlation sequences and nilsequences*, Ergodic Theory Dynam. Systems**30**(2010), no. 3, 841–854. MR**2643713**, DOI 10.1017/S0143385709000303 - A. Leibman,
*Nilsequences, null-sequences, and multiple correlation sequences*, Ergodic Theory Dynam. Systems**35**(2015), no. 1, 176–191. MR**3294297**, DOI 10.1017/etds.2013.36 - Georges Rhin,
*Sur la répartition modulo $1$ des suites $f(p)$*, Acta Arith.**23**(1973), 217–248 (French). MR**323731**, DOI 10.4064/aa-23-3-217-248 - Terence Tao and Joni Teräväinen,
*The structure of logarithmically averaged correlations of multiplicative functions, with applications to the Chowla and Elliott conjectures*, Duke Math. J.**168**(2019), no. 11, 1977–2027. MR**3992031**, DOI 10.1215/00127094-2019-0002 - Miguel N. Walsh,
*Norm convergence of nilpotent ergodic averages*, Ann. of Math. (2)**175**(2012), no. 3, 1667–1688. MR**2912715**, DOI 10.4007/annals.2012.175.3.15 - Hermann Weyl,
*Über die Gleichverteilung von Zahlen mod. Eins*, Math. Ann.**77**(1916), no. 3, 313–352 (German). MR**1511862**, DOI 10.1007/BF01475864

## Additional Information

**Andreas Koutsogiannis**- Affiliation: Department of Mathematics, The Ohio State University, Columbus, Ohio
- MR Author ID: 974679
- Email: koutsogiannis.1@osu.edu
**Anh N. Le**- Affiliation: Department of Mathematics, Northwestern University, Evanston, Illinois
- ORCID: 0000-0003-4928-4932
- Email: anhle@math.northwestern.edu
**Joel Moreira**- Affiliation: Mathematics Institute, University of Warwick, Coventry, United Kingdom
- MR Author ID: 1091663
- Email: joel.moreira@warwick.ac.uk
**Florian K. Richter**- Affiliation: Department of Mathematics, Northwestern University, Evanston, Illinois
- MR Author ID: 1147216
- Email: fkr@northwestern.edu
- Received by editor(s): April 24, 2020
- Published electronically: October 16, 2020
- Additional Notes: The fourth author was supported by the National Science Foundation under grant number DMS 1901453.
- Communicated by: Katrin Gelfert
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**149**(2021), 209-216 - MSC (2010): Primary 37A45, 37A15; Secondary 11B30
- DOI: https://doi.org/10.1090/proc/15185
- MathSciNet review: 4172598