Structure of multicorrelation sequences with integer part polynomial iterates along primes
HTML articles powered by AMS MathViewer
- by Andreas Koutsogiannis, Anh N. Le, Joel Moreira and Florian K. Richter
- Proc. Amer. Math. Soc. 149 (2021), 209-216
- DOI: https://doi.org/10.1090/proc/15185
- Published electronically: October 16, 2020
- PDF | Request permission
Abstract:
Let $T$ be a measure-preserving $\mathbb {Z}^\ell$-action on the probability space $(X,{\mathcal B},\mu ),$ let $q_1,\dots ,q_m\colon \mathbb {R}\to \mathbb {R}^\ell$ be vector polynomials, and let $f_0,\dots ,f_m \in L^\infty (X)$. For any $\epsilon > 0$ and multicorrelation sequences of the form $\alpha (n) =\int _Xf_0\cdot T^{ \lfloor q_1(n) \rfloor }f_1\cdots T^{ \lfloor q_m(n) \rfloor }f_m\;d\mu$ we show that there exists a nil- sequence $\psi$ for which $\lim _{N - M \to \infty } \frac {1}{N-M} \sum _{n=M}^{N-1} |\alpha (n) - \psi (n)| \leq \epsilon$ and $\lim _{N \to \infty } \frac {1}{\pi (N)} \sum _{p \in \mathbb {P}\cap [1,N]} |\alpha (p) - \psi (p)| \leq \epsilon .$ This result simultaneously generalizes previous results of Frantzikinakis and the authors.References
- Vitaly Bergelson, Bernard Host, and Bryna Kra, Multiple recurrence and nilsequences, Invent. Math. 160 (2005), no. 2, 261–303. With an appendix by Imre Ruzsa. MR 2138068, DOI 10.1007/s00222-004-0428-6
- Nikos Frantzikinakis, Multiple correlation sequences and nilsequences, Invent. Math. 202 (2015), no. 2, 875–892. MR 3418246, DOI 10.1007/s00222-015-0579-7
- Nikos Frantzikinakis, Some open problems on multiple ergodic averages, Bull. Hellenic Math. Soc. 60 (2016), 41–90. MR 3613710
- Nikos Frantzikinakis and Bernard Host, Weighted multiple ergodic averages and correlation sequences, Ergodic Theory Dynam. Systems 38 (2018), no. 1, 81–142. MR 3742539, DOI 10.1017/etds.2016.19
- Harry Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256. MR 498471, DOI 10.1007/BF02813304
- Inger Johanne Håland, Uniform distribution of generalized polynomials, J. Number Theory 45 (1993), no. 3, 327–366. MR 1247389, DOI 10.1006/jnth.1993.1082
- Bernard Host and Bryna Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2) 161 (2005), no. 1, 397–488. MR 2150389, DOI 10.4007/annals.2005.161.397
- Bernard Host and Bryna Kra, Nilpotent structures in ergodic theory, Mathematical Surveys and Monographs, vol. 236, American Mathematical Society, Providence, RI, 2018. MR 3839640, DOI 10.1090/surv/236
- Bernard Host and Alejandro Maass, Nilsystèmes d’ordre 2 et parallélépipèdes, Bull. Soc. Math. France 135 (2007), no. 3, 367–405 (French, with English and French summaries). MR 2430186, DOI 10.24033/bsmf.2539
- Andreas Koutsogiannis, Closest integer polynomial multiple recurrence along shifted primes, Ergodic Theory Dynam. Systems 38 (2018), no. 2, 666–685. MR 3774837, DOI 10.1017/etds.2016.40
- Andreas Koutsogiannis, Integer part polynomial correlation sequences, Ergodic Theory Dynam. Systems 38 (2018), no. 4, 1525–1542. MR 3789175, DOI 10.1017/etds.2016.67
- Anh Ngoc Le, Nilsequences and multiple correlations along subsequences, Ergodic Theory Dynam. Systems 40 (2020), no. 6, 1634–1654. MR 4092860, DOI 10.1017/etds.2018.110
- Anh N. Le, Joel Moreira, and Florian K. Richter, A decomposition of multicorrelation sequences for commuting transformations along primes, arXiv:2001.11523, 2020.
- A. Leibman, Multiple polynomial correlation sequences and nilsequences, Ergodic Theory Dynam. Systems 30 (2010), no. 3, 841–854. MR 2643713, DOI 10.1017/S0143385709000303
- A. Leibman, Nilsequences, null-sequences, and multiple correlation sequences, Ergodic Theory Dynam. Systems 35 (2015), no. 1, 176–191. MR 3294297, DOI 10.1017/etds.2013.36
- Georges Rhin, Sur la répartition modulo $1$ des suites $f(p)$, Acta Arith. 23 (1973), 217–248 (French). MR 323731, DOI 10.4064/aa-23-3-217-248
- Terence Tao and Joni Teräväinen, The structure of logarithmically averaged correlations of multiplicative functions, with applications to the Chowla and Elliott conjectures, Duke Math. J. 168 (2019), no. 11, 1977–2027. MR 3992031, DOI 10.1215/00127094-2019-0002
- Miguel N. Walsh, Norm convergence of nilpotent ergodic averages, Ann. of Math. (2) 175 (2012), no. 3, 1667–1688. MR 2912715, DOI 10.4007/annals.2012.175.3.15
- Hermann Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), no. 3, 313–352 (German). MR 1511862, DOI 10.1007/BF01475864
Bibliographic Information
- Andreas Koutsogiannis
- Affiliation: Department of Mathematics, The Ohio State University, Columbus, Ohio
- MR Author ID: 974679
- Email: koutsogiannis.1@osu.edu
- Anh N. Le
- Affiliation: Department of Mathematics, Northwestern University, Evanston, Illinois
- ORCID: 0000-0003-4928-4932
- Email: anhle@math.northwestern.edu
- Joel Moreira
- Affiliation: Mathematics Institute, University of Warwick, Coventry, United Kingdom
- MR Author ID: 1091663
- Email: joel.moreira@warwick.ac.uk
- Florian K. Richter
- Affiliation: Department of Mathematics, Northwestern University, Evanston, Illinois
- MR Author ID: 1147216
- Email: fkr@northwestern.edu
- Received by editor(s): April 24, 2020
- Published electronically: October 16, 2020
- Additional Notes: The fourth author was supported by the National Science Foundation under grant number DMS 1901453.
- Communicated by: Katrin Gelfert
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 209-216
- MSC (2010): Primary 37A45, 37A15; Secondary 11B30
- DOI: https://doi.org/10.1090/proc/15185
- MathSciNet review: 4172598