## A support theorem for the Dunkl spherical mean operator

HTML articles powered by AMS MathViewer

- by Salem Ben Saïd
- Proc. Amer. Math. Soc.
**149**(2021), 279-284 - DOI: https://doi.org/10.1090/proc/15206
- Published electronically: October 16, 2020
- PDF | Request permission

## Abstract:

We prove a support theorem for the Dunkl spherical mean operator. The proof relies on the decay of the total energy of the solutions to Euler-Poisson-Darboux type equations.## References

- Mark Agranovsky, Carlos Berenstein, and Peter Kuchment,
*Approximation by spherical waves in $L^p$-spaces*, J. Geom. Anal.**6**(1996), no. 3, 365–383 (1997). MR**1471897**, DOI 10.1007/BF02921656 - Salem Ben Saïd, Sundaram Thangavelu, and Venku Naidu Dogga,
*Uniqueness of solutions to Schrödinger equations on $H$-type groups*, J. Aust. Math. Soc.**95**(2013), no. 3, 297–314. MR**3164504**, DOI 10.1017/S1446788713000311 - Charles L. Epstein and Bruce Kleiner,
*Spherical means in annular regions*, Comm. Pure Appl. Math.**46**(1993), no. 3, 441–451. MR**1202964**, DOI 10.1002/cpa.3160460307 - Feng Dai and Yuan Xu,
*Analysis on $h$-harmonics and Dunkl transforms*, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser/Springer, Basel, 2015. Edited by Sergey Tikhonov. MR**3309987**, DOI 10.1007/978-3-0348-0887-3 - Charles F. Dunkl,
*Reflection groups and orthogonal polynomials on the sphere*, Math. Z.**197**(1988), no. 1, 33–60. MR**917849**, DOI 10.1007/BF01161629 - Charles F. Dunkl and Yuan Xu,
*Orthogonal polynomials of several variables*, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 155, Cambridge University Press, Cambridge, 2014. MR**3289583**, DOI 10.1017/CBO9781107786134 - D. V. Gorbachev, V. I. Ivanov, and S. Yu. Tikhonov,
*Positive $L^p$-bounded Dunkl-type generalized translation operator and its applications*, Constr. Approx.**49**(2019), no. 3, 555–605. MR**3946421**, DOI 10.1007/s00365-018-9435-5 - Sigurđur Helgason,
*The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds*, Acta Math.**113**(1965), 153–180. MR**172311**, DOI 10.1007/BF02391776 - Sigurdur Helgason,
*The Radon transform*, Progress in Mathematics, vol. 5, Birkhäuser, Boston, Mass., 1980. MR**573446**, DOI 10.1007/978-1-4899-6765-7 - S. Helgason,
*Some results on Radon transforms, Huygens’ principle and X-ray transforms*, Integral geometry (Brunswick, Maine, 1984) Contemp. Math., vol. 63, Amer. Math. Soc., Providence, RI, 1987, pp. 151–177. MR**876318**, DOI 10.1090/conm/063/876318 - H. Mejjaoli and K. Trimèche,
*On a mean value property associated with the Dunkl Laplacian operator and applications*, Integral Transform. Spec. Funct.**12**(2001), no. 3, 279–302. MR**1872437**, DOI 10.1080/10652460108819351 - E. K. Narayanan and S. Thangavelu,
*A spectral Paley-Wiener theorem for the Heisenberg group and a support theorem for the twisted spherical means on $\Bbb C^n$*, Ann. Inst. Fourier (Grenoble)**56**(2006), no. 2, 459–473 (English, with English and French summaries). MR**2226023**, DOI 10.5802/aif.2189 - Eric Todd Quinto,
*Helgason’s support theorem and spherical Radon transforms*, Radon transforms, geometry, and wavelets, Contemp. Math., vol. 464, Amer. Math. Soc., Providence, RI, 2008, pp. 249–264. MR**2440141**, DOI 10.1090/conm/464/09088 - Margit Rösler,
*A positive radial product formula for the Dunkl kernel*, Trans. Amer. Math. Soc.**355**(2003), no. 6, 2413–2438. MR**1973996**, DOI 10.1090/S0002-9947-03-03235-5 - Robert S. Strichartz,
*Harmonic analysis as spectral theory of Laplacians*, J. Funct. Anal.**87**(1989), no. 1, 51–148. MR**1025883**, DOI 10.1016/0022-1236(89)90004-9 - Sundaram Thangavelu and Yuan Xu,
*Convolution operator and maximal function for the Dunkl transform*, J. Anal. Math.**97**(2005), 25–55. MR**2274972**, DOI 10.1007/BF02807401 - Khalifa Trimèche,
*Paley-Wiener theorems for the Dunkl transform and Dunkl translation operators*, Integral Transforms Spec. Funct.**13**(2002), no. 1, 17–38. MR**1914125**, DOI 10.1080/10652460212888 - Yuan Xu,
*Uncertainty principle on weighted spheres, balls and simplexes*, J. Approx. Theory**192**(2015), 193–214. MR**3313480**, DOI 10.1016/j.jat.2014.11.003

## Bibliographic Information

**Salem Ben Saïd**- Affiliation: Mathematical Sciences Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- ORCID: 0000-0002-9077-4629
- Email: salem.bensaid@uaeu.ac.ae
- Received by editor(s): November 13, 2019
- Received by editor(s) in revised form: May 25, 2020
- Published electronically: October 16, 2020
- Additional Notes: The author is thankful to United Arab Emirates University for the Start-up Grant No. G00002950.
- Communicated by: Yuan Xu
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**149**(2021), 279-284 - MSC (2010): Primary 44A15; Secondary 39A70
- DOI: https://doi.org/10.1090/proc/15206
- MathSciNet review: 4172604