Uncertainty principle and its rigidity on complete gradient shrinking Ricci solitons
Authors:
Weixiong Mai and Jianyu Ou
Journal:
Proc. Amer. Math. Soc. 149 (2021), 285-299
MSC (2010):
Primary 26D10, 53C21, 53C24
DOI:
https://doi.org/10.1090/proc/15210
Published electronically:
October 20, 2020
MathSciNet review:
4172605
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We prove rigidity theorems for shrinking gradient Ricci solitons supporting the Heisenberg-Pauli-Weyl uncertainty principle with the sharp constant in $\mathbb {R}^n$. In addition, we partially give analogous rigidity results of the Caffarelli-Kohn-Nirenberg inequalities on shrinking Ricci solitons.
- Thierry Aubin, Meilleures constantes dans le théorème d’inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, J. Functional Analysis 32 (1979), no. 2, 148–174 (French, with English summary). MR 534672, DOI https://doi.org/10.1016/0022-1236%2879%2990052-1
- D. Bakry, D. Concordet, and M. Ledoux, Optimal heat kernel bounds under logarithmic Sobolev inequalities, ESAIM Probab. Statist. 1 (1995/97), 391–407. MR 1486642, DOI https://doi.org/10.1051/ps%3A1997115
- Ernst Breitenberger, Uncertainty measures and uncertainty relations for angle observables, Found. Phys. 15 (1985), no. 3, 353–364. MR 811750, DOI https://doi.org/10.1007/BF00737323
- Huai-Dong Cao, Recent progress on Ricci solitons, Recent advances in geometric analysis, Adv. Lect. Math. (ALM), vol. 11, Int. Press, Somerville, MA, 2010, pp. 1–38. MR 2648937
- Huai-Dong Cao and Detang Zhou, On complete gradient shrinking Ricci solitons, J. Differential Geom. 85 (2010), no. 2, 175–185. MR 2732975
- L. Caffarelli, R. Kohn, and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math. 53 (1984), no. 3, 259–275. MR 768824
- Manfredo Perdigão do Carmo, Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty. MR 1138207
- Manfredo Perdigão do Carmo and Changyu Xia, Complete manifolds with non-negative Ricci curvature and the Caffarelli-Kohn-Nirenberg inequalities, Compos. Math. 140 (2004), no. 3, 818–826. MR 2041783, DOI https://doi.org/10.1112/S0010437X03000745
- Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom. 46 (1997), no. 3, 406–480. MR 1484888
- Bing-Long Chen, Strong uniqueness of the Ricci flow, J. Differential Geom. 82 (2009), no. 2, 363–382. MR 2520796
- Bennett Chow, Peng Lu, and Bo Yang, Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons, C. R. Math. Acad. Sci. Paris 349 (2011), no. 23-24, 1265–1267 (English, with English and French summaries). MR 2861997, DOI https://doi.org/10.1016/j.crma.2011.11.004
- L. Cohen, Time-Frequency analysis: theory and applications, Prentice Hall, 1995.
- Pei Dang, Guan-Tie Deng, and Tao Qian, A sharper uncertainty principle, J. Funct. Anal. 265 (2013), no. 10, 2239–2266. MR 3091814, DOI https://doi.org/10.1016/j.jfa.2013.07.023
- Olivier Druet, Emmanuel Hebey, and Michel Vaugon, Optimal Nash’s inequalities on Riemannian manifolds: the influence of geometry, Internat. Math. Res. Notices 14 (1999), 735–779. MR 1704184, DOI https://doi.org/10.1155/S1073792899000380
- W. Erb, Uncertainty principles on Riemannian manifolds, PhD Thesis, 2010.
- Charles L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 2, 129–206. MR 707957, DOI https://doi.org/10.1090/S0273-0979-1983-15154-6
- Manuel Fernández-López and Eduardo García-Río, On gradient Ricci solitons with constant scalar curvature, Proc. Amer. Math. Soc. 144 (2016), no. 1, 369–378. MR 3415603, DOI https://doi.org/10.1090/S0002-9939-2015-12693-7
- Gerald B. Folland and Alladi Sitaram, The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl. 3 (1997), no. 3, 207–238. MR 1448337, DOI https://doi.org/10.1007/BF02649110
- Mikhail Feldman, Tom Ilmanen, and Dan Knopf, Rotationally symmetric shrinking and expanding gradient Kähler-Ricci solitons, J. Differential Geom. 65 (2003), no. 2, 169–209. MR 2058261
- Richard S. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993) Int. Press, Cambridge, MA, 1995, pp. 7–136. MR 1375255
- Emmanuel Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathematics, vol. 5, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999. MR 1688256
- W. Heisenberg, Uber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Z. Physik 43 (1927), 172–198.
- L. Huang, A. Kristály and W. Zhao Sharp uncertainty principles on general Finsler manifolds, accepted, Trans. Amer. Math. Soc., DOI: https://doi.org/10.1090/tran/8178.
- Ismail Kombe and Murad Özaydin, Improved Hardy and Rellich inequalities on Riemannian manifolds, Trans. Amer. Math. Soc. 361 (2009), no. 12, 6191–6203. MR 2538592, DOI https://doi.org/10.1090/S0002-9947-09-04642-X
- Ismail Kombe and Murad Özaydin, Hardy-Poincaré, Rellich and uncertainty principle inequalities on Riemannian manifolds, Trans. Amer. Math. Soc. 365 (2013), no. 10, 5035–5050. MR 3074365, DOI https://doi.org/10.1090/S0002-9947-2013-05763-7
- Alexandru Kristály, Metric measure spaces supporting Gagliardo-Nirenberg inequalities: volume non-collapsing and rigidities, Calc. Var. Partial Differential Equations 55 (2016), no. 5, Art. 112, 27. MR 3549918, DOI https://doi.org/10.1007/s00526-016-1065-9
- Alexandru Kristály, Sharp uncertainty principles on Riemannian manifolds: the influence of curvature, J. Math. Pures Appl. (9) 119 (2018), 326–346 (English, with English and French summaries). MR 3862150, DOI https://doi.org/10.1016/j.matpur.2017.09.002
- Alexandru Kristály and Shin-ichi Ohta, Caffarelli-Kohn-Nirenberg inequality on metric measure spaces with applications, Math. Ann. 357 (2013), no. 2, 711–726. MR 3096522, DOI https://doi.org/10.1007/s00208-013-0918-1
- M. Ledoux, On manifolds with non-negative Ricci curvature and Sobolev inequalities, Comm. Anal. Geom. 7 (1999), no. 2, 347–353. MR 1685586, DOI https://doi.org/10.4310/CAG.1999.v7.n2.a7
- Peter Li and Jiaping Wang, Weighted Poincaré inequality and rigidity of complete manifolds, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 6, 921–982 (English, with English and French summaries). MR 2316978, DOI https://doi.org/10.1016/j.ansens.2006.11.001
- Vincent Minerbe, Weighted Sobolev inequalities and Ricci flat manifolds, Geom. Funct. Anal. 18 (2009), no. 5, 1696–1749. MR 2481740, DOI https://doi.org/10.1007/s00039-009-0701-3
- S. B. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941), 401–404. MR 4518
- V. H. Nguyen, Sharp Caffarelli-Kohn-Nirenberg inequalities on Riemannian manifolds: the influence of curvature, (2017), arXiv:1709.06120 [math.FA].
- Stefano Pigola, Michele Rimoldi, and Alberto G. Setti, Remarks on non-compact gradient Ricci solitons, Math. Z. 268 (2011), no. 3-4, 777–790. MR 2818729, DOI https://doi.org/10.1007/s00209-010-0695-4
- Hermann Weyl, The theory of groups and quantum mechanics, Dover Publications, Inc., New York, 1950. Translated from the second (revised) German edition by H. P. Robertson; Reprint of the 1931 English translation. MR 3363447
- Changyu Xia, Complete manifolds with nonnegative Ricci curvature and almost best Sobolev constant, Illinois J. Math. 45 (2001), no. 4, 1253–1259. MR 1894894
- Changyu Xia, The Gagliardo-Nirenberg inequalities and manifolds of non-negative Ricci curvature, J. Funct. Anal. 224 (2005), no. 1, 230–241. MR 2139111, DOI https://doi.org/10.1016/j.jfa.2004.11.009
- Changyu Xia, The Caffarelli-Kohn-Nirenberg inequalities on complete manifolds, Math. Res. Lett. 14 (2007), no. 5, 875–885. MR 2350131, DOI https://doi.org/10.4310/MRL.2007.v14.n5.a14
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 26D10, 53C21, 53C24
Retrieve articles in all journals with MSC (2010): 26D10, 53C21, 53C24
Additional Information
Weixiong Mai
Affiliation:
School of Mathematics (Zhuhai), Sun Yat-Sen University (Zhuhai), Zhuhai, People’s Republic of China
MR Author ID:
1079061
Email:
maiwx3@mail.sysu.edu.cn
Jianyu Ou
Affiliation:
Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, People’s Republic of China
Email:
oujianyu@fudan.edu.cn
Received by editor(s):
December 28, 2019
Received by editor(s) in revised form:
May 26, 2020
Published electronically:
October 20, 2020
Additional Notes:
The first author was partially supported by National Natural Science Foundation of China No. 11901594, and the Fundamental Research Fund for the Central Universities (20lgpy150).
The second author was partially supported by China’s post-doctoral fund special support No. KLH1411067, and China’s post-doctoral fund support No. KLH1414010.
The second author is the corresponding author.
Communicated by:
Guofang Wei
Article copyright:
© Copyright 2020
American Mathematical Society