Uncertainty principle and its rigidity on complete gradient shrinking Ricci solitons
HTML articles powered by AMS MathViewer
- by Weixiong Mai and Jianyu Ou
- Proc. Amer. Math. Soc. 149 (2021), 285-299
- DOI: https://doi.org/10.1090/proc/15210
- Published electronically: October 20, 2020
- PDF | Request permission
Abstract:
We prove rigidity theorems for shrinking gradient Ricci solitons supporting the Heisenberg-Pauli-Weyl uncertainty principle with the sharp constant in $\mathbb {R}^n$. In addition, we partially give analogous rigidity results of the Caffarelli-Kohn-Nirenberg inequalities on shrinking Ricci solitons.References
- Thierry Aubin, Meilleures constantes dans le théorème d’inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, J. Functional Analysis 32 (1979), no. 2, 148–174 (French, with English summary). MR 534672, DOI 10.1016/0022-1236(79)90052-1
- D. Bakry, D. Concordet, and M. Ledoux, Optimal heat kernel bounds under logarithmic Sobolev inequalities, ESAIM Probab. Statist. 1 (1995/97), 391–407. MR 1486642, DOI 10.1051/ps:1997115
- Ernst Breitenberger, Uncertainty measures and uncertainty relations for angle observables, Found. Phys. 15 (1985), no. 3, 353–364. MR 811750, DOI 10.1007/BF00737323
- Huai-Dong Cao, Recent progress on Ricci solitons, Recent advances in geometric analysis, Adv. Lect. Math. (ALM), vol. 11, Int. Press, Somerville, MA, 2010, pp. 1–38. MR 2648937
- Huai-Dong Cao and Detang Zhou, On complete gradient shrinking Ricci solitons, J. Differential Geom. 85 (2010), no. 2, 175–185. MR 2732975
- L. Caffarelli, R. Kohn, and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math. 53 (1984), no. 3, 259–275. MR 768824
- Manfredo Perdigão do Carmo, Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty. MR 1138207, DOI 10.1007/978-1-4757-2201-7
- Manfredo Perdigão do Carmo and Changyu Xia, Complete manifolds with non-negative Ricci curvature and the Caffarelli-Kohn-Nirenberg inequalities, Compos. Math. 140 (2004), no. 3, 818–826. MR 2041783, DOI 10.1112/S0010437X03000745
- Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom. 46 (1997), no. 3, 406–480. MR 1484888
- Bing-Long Chen, Strong uniqueness of the Ricci flow, J. Differential Geom. 82 (2009), no. 2, 363–382. MR 2520796
- Bennett Chow, Peng Lu, and Bo Yang, Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons, C. R. Math. Acad. Sci. Paris 349 (2011), no. 23-24, 1265–1267 (English, with English and French summaries). MR 2861997, DOI 10.1016/j.crma.2011.11.004
- L. Cohen, Time-Frequency analysis: theory and applications, Prentice Hall, 1995.
- Pei Dang, Guan-Tie Deng, and Tao Qian, A sharper uncertainty principle, J. Funct. Anal. 265 (2013), no. 10, 2239–2266. MR 3091814, DOI 10.1016/j.jfa.2013.07.023
- Olivier Druet, Emmanuel Hebey, and Michel Vaugon, Optimal Nash’s inequalities on Riemannian manifolds: the influence of geometry, Internat. Math. Res. Notices 14 (1999), 735–779. MR 1704184, DOI 10.1155/S1073792899000380
- W. Erb, Uncertainty principles on Riemannian manifolds, PhD Thesis, 2010.
- Charles L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 2, 129–206. MR 707957, DOI 10.1090/S0273-0979-1983-15154-6
- Manuel Fernández-López and Eduardo García-Río, On gradient Ricci solitons with constant scalar curvature, Proc. Amer. Math. Soc. 144 (2016), no. 1, 369–378. MR 3415603, DOI 10.1090/proc/12693
- Gerald B. Folland and Alladi Sitaram, The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl. 3 (1997), no. 3, 207–238. MR 1448337, DOI 10.1007/BF02649110
- Mikhail Feldman, Tom Ilmanen, and Dan Knopf, Rotationally symmetric shrinking and expanding gradient Kähler-Ricci solitons, J. Differential Geom. 65 (2003), no. 2, 169–209. MR 2058261
- Richard S. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993) Int. Press, Cambridge, MA, 1995, pp. 7–136. MR 1375255
- Emmanuel Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathematics, vol. 5, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999. MR 1688256
- W. Heisenberg, Uber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Z. Physik 43 (1927), 172–198.
- L. Huang, A. Kristály and W. Zhao Sharp uncertainty principles on general Finsler manifolds, accepted, Trans. Amer. Math. Soc., DOI: https://doi.org/10.1090/tran/8178.
- Ismail Kombe and Murad Özaydin, Improved Hardy and Rellich inequalities on Riemannian manifolds, Trans. Amer. Math. Soc. 361 (2009), no. 12, 6191–6203. MR 2538592, DOI 10.1090/S0002-9947-09-04642-X
- Ismail Kombe and Murad Özaydin, Hardy-Poincaré, Rellich and uncertainty principle inequalities on Riemannian manifolds, Trans. Amer. Math. Soc. 365 (2013), no. 10, 5035–5050. MR 3074365, DOI 10.1090/S0002-9947-2013-05763-7
- Alexandru Kristály, Metric measure spaces supporting Gagliardo-Nirenberg inequalities: volume non-collapsing and rigidities, Calc. Var. Partial Differential Equations 55 (2016), no. 5, Art. 112, 27. MR 3549918, DOI 10.1007/s00526-016-1065-9
- Alexandru Kristály, Sharp uncertainty principles on Riemannian manifolds: the influence of curvature, J. Math. Pures Appl. (9) 119 (2018), 326–346 (English, with English and French summaries). MR 3862150, DOI 10.1016/j.matpur.2017.09.002
- Alexandru Kristály and Shin-ichi Ohta, Caffarelli-Kohn-Nirenberg inequality on metric measure spaces with applications, Math. Ann. 357 (2013), no. 2, 711–726. MR 3096522, DOI 10.1007/s00208-013-0918-1
- M. Ledoux, On manifolds with non-negative Ricci curvature and Sobolev inequalities, Comm. Anal. Geom. 7 (1999), no. 2, 347–353. MR 1685586, DOI 10.4310/CAG.1999.v7.n2.a7
- Peter Li and Jiaping Wang, Weighted Poincaré inequality and rigidity of complete manifolds, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 6, 921–982 (English, with English and French summaries). MR 2316978, DOI 10.1016/j.ansens.2006.11.001
- Vincent Minerbe, Weighted Sobolev inequalities and Ricci flat manifolds, Geom. Funct. Anal. 18 (2009), no. 5, 1696–1749. MR 2481740, DOI 10.1007/s00039-009-0701-3
- S. B. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941), 401–404. MR 4518, DOI 10.1215/S0012-7094-41-00832-3
- V. H. Nguyen, Sharp Caffarelli-Kohn-Nirenberg inequalities on Riemannian manifolds: the influence of curvature, (2017), arXiv:1709.06120 [math.FA].
- Stefano Pigola, Michele Rimoldi, and Alberto G. Setti, Remarks on non-compact gradient Ricci solitons, Math. Z. 268 (2011), no. 3-4, 777–790. MR 2818729, DOI 10.1007/s00209-010-0695-4
- Hermann Weyl, The theory of groups and quantum mechanics, Dover Publications, Inc., New York, 1950. Translated from the second (revised) German edition by H. P. Robertson; Reprint of the 1931 English translation. MR 3363447
- Changyu Xia, Complete manifolds with nonnegative Ricci curvature and almost best Sobolev constant, Illinois J. Math. 45 (2001), no. 4, 1253–1259. MR 1894894
- Changyu Xia, The Gagliardo-Nirenberg inequalities and manifolds of non-negative Ricci curvature, J. Funct. Anal. 224 (2005), no. 1, 230–241. MR 2139111, DOI 10.1016/j.jfa.2004.11.009
- Changyu Xia, The Caffarelli-Kohn-Nirenberg inequalities on complete manifolds, Math. Res. Lett. 14 (2007), no. 5, 875–885. MR 2350131, DOI 10.4310/MRL.2007.v14.n5.a14
Bibliographic Information
- Weixiong Mai
- Affiliation: School of Mathematics (Zhuhai), Sun Yat-Sen University (Zhuhai), Zhuhai, People’s Republic of China
- MR Author ID: 1079061
- Email: maiwx3@mail.sysu.edu.cn
- Jianyu Ou
- Affiliation: Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, People’s Republic of China
- Email: oujianyu@fudan.edu.cn
- Received by editor(s): December 28, 2019
- Received by editor(s) in revised form: May 26, 2020
- Published electronically: October 20, 2020
- Additional Notes: The first author was partially supported by National Natural Science Foundation of China No. 11901594, and the Fundamental Research Fund for the Central Universities (20lgpy150).
The second author was partially supported by China’s post-doctoral fund special support No. KLH1411067, and China’s post-doctoral fund support No. KLH1414010.
The second author is the corresponding author. - Communicated by: Guofang Wei
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 285-299
- MSC (2010): Primary 26D10, 53C21, 53C24
- DOI: https://doi.org/10.1090/proc/15210
- MathSciNet review: 4172605