Nuclear weighted composition operators on weighted Banach spaces of analytic functions
HTML articles powered by AMS MathViewer
- by José Bonet, M. Carmen Gómez-Collado, Enrique Jordá and David Jornet
- Proc. Amer. Math. Soc. 149 (2021), 311-321
- DOI: https://doi.org/10.1090/proc/15223
- Published electronically: September 18, 2020
- PDF | Request permission
Abstract:
We characterize nuclear weighted composition operators $W_{\psi ,\varphi }f=\psi (f\circ \varphi )$ on weighted Banach spaces of analytic functions with sup-norms. Consequences about nuclear composition operators on Bloch type spaces are presented. They extend previous work by Fares and Lefèvre on nuclear composition operators on Bloch spaces. Examples of nuclear as well as compact and non-nuclear weighted composition operators are given.References
- Klaus D. Bierstedt, José Bonet, and Antonio Galbis, Weighted spaces of holomorphic functions on balanced domains, Michigan Math. J. 40 (1993), no. 2, 271–297. MR 1226832, DOI 10.1307/mmj/1029004753
- Klaus D. Bierstedt, José Bonet, and Jari Taskinen, Associated weights and spaces of holomorphic functions, Studia Math. 127 (1998), no. 2, 137–168. MR 1488148, DOI 10.4064/sm-127-2-137-168
- José Bonet, PawełDomański, and Mikael Lindström, Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions, Canad. Math. Bull. 42 (1999), no. 2, 139–148. MR 1692002, DOI 10.4153/CMB-1999-016-x
- J. Bonet, P. Domański, M. Lindström, and J. Taskinen, Composition operators between weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 64 (1998), no. 1, 101–118. MR 1490150, DOI 10.1017/S1446788700001336
- M. D. Contreras and A. G. Hernandez-Diaz, Weighted composition operators in weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 69 (2000), no. 1, 41–60. MR 1767392, DOI 10.1017/S144678870000183X
- John B. Conway, A course in functional analysis, 2nd ed., Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1990. MR 1070713
- Carl C. Cowen and Barbara D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397026
- Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995. MR 1342297, DOI 10.1017/CBO9780511526138
- PawełDomański and Mikael Lindström, Sets of interpolation and sampling for weighted Banach spaces of holomorphic functions, Ann. Polon. Math. 79 (2002), no. 3, 233–264. MR 1957801, DOI 10.4064/ap79-3-3
- Tonie Fares and Pascal Lefèvre, Nuclear composition operators on Bloch spaces, Proc. Amer. Math. Soc. 148 (2020), no. 6, 2487–2496. MR 4080891, DOI 10.1090/proc/14915
- Wolfgang Lusky, On the structure of $Hv_0(D)$ and $hv_0(D)$, Math. Nachr. 159 (1992), 279–289. MR 1237115, DOI 10.1002/mana.19921590119
- Wolfgang Lusky, On weighted spaces of harmonic and holomorphic functions, J. London Math. Soc. (2) 51 (1995), no. 2, 309–320. MR 1325574, DOI 10.4064/sm175-1-2
- Wolfgang Lusky, On the isomorphism classes of weighted spaces of harmonic and holomorphic functions, Studia Math. 175 (2006), no. 1, 19–45. MR 2261698, DOI 10.4064/sm175-1-2
- Alfonso Montes-Rodríguez, Weighted composition operators on weighted Banach spaces of analytic functions, J. London Math. Soc. (2) 61 (2000), no. 3, 872–884. MR 1766111, DOI 10.1112/S0024610700008875
- Albrecht Pietsch, Nuclear locally convex spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 66, Springer-Verlag, New York-Heidelberg, 1972. Translated from the second German edition by William H. Ruckle. MR 0350360, DOI 10.1007/978-3-642-87665-3
- Joel H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1237406, DOI 10.1007/978-1-4612-0887-7
- J. H. Shapiro and P. D. Taylor, Compact, nuclear, and Hilbert-Schmidt composition operators on $H^{2}$, Indiana Univ. Math. J. 23 (1973/74), 471–496. MR 326472, DOI 10.1512/iumj.1973.23.23041
- A. L. Shields and D. L. Williams, Bonded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287–302. MR 283559, DOI 10.1090/S0002-9947-1971-0283559-3
- Allen L. Shields and David L. Williams, Bounded projections, duality, and multipliers in spaces of harmonic functions, J. Reine Angew. Math. 299(300) (1978), 256–279. MR 487415
- Jari Taskinen, Compact composition operators on general weighted spaces, Houston J. Math. 27 (2001), no. 1, 203–218. MR 1843919
Bibliographic Information
- José Bonet
- Affiliation: Instituto Universitario de Matemática Pura y Aplicada IUMPA, Universitat Politècnica de València, Camino de Vera, s/n, E-46071 Valencia, Spain
- ORCID: 0000-0002-9096-6380
- Email: jbonet@mat.upv.es
- M. Carmen Gómez-Collado
- Affiliation: Instituto Universitario de Matemática Pura y Aplicada IUMPA, Universitat Politècnica de València, Camino de Vera, s/n, E-46071 Valencia, Spain
- ORCID: 0000-0003-0604-1009
- Email: mcgomez@mat.upv.es
- Enrique Jordá
- Affiliation: EPS Alcoy, Instituto Universitario de Matemática Pura y Aplicada IUMPA, Universitat Politècnica de València, Plaza Ferrándiz y Carbonell s/n, E-03801 Alcoy, Spain
- ORCID: 0000-0003-2980-1699
- Email: ejorda@mat.upv.es
- David Jornet
- Affiliation: Instituto Universitario de Matemática Pura y Aplicada IUMPA, Universitat Politècnica de València, Camino de Vera, s/n, E-46071 Valencia, Spain
- MR Author ID: 693618
- ORCID: 0000-0002-3531-6203
- Email: djornet@mat.upv.es
- Received by editor(s): April 21, 2020
- Received by editor(s) in revised form: June 4, 2020
- Published electronically: September 18, 2020
- Additional Notes: The research of the authors was partially supported by the project MTM2016-76647-P. The research of the first author was partially supported by the project GV Prometeo 2017/102.
- Communicated by: Javad Mashreghi
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 311-321
- MSC (2010): Primary 47B10, 47B33
- DOI: https://doi.org/10.1090/proc/15223
- MathSciNet review: 4172607