Convex hulls of polynomial Julia sets
Author:
Małgorzata Stawiska
Journal:
Proc. Amer. Math. Soc. 149 (2021), 245-250
MSC (2010):
Primary 37F10; Secondary 30C15, 52A10
DOI:
https://doi.org/10.1090/proc/15224
Published electronically:
October 9, 2020
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We prove P. Alexandersson's conjecture that for every complex polynomial of degree
the convex hull
of the Julia set
of
satisfies
. We further prove that the equality
is achieved if and only if
is affinely conjugated to the Chebyshev polynomial
of degree
, to
, or to a monomial
with
.
- [1]
P. Alexandersson,
Convex Julia sets,
Math Overflow question, April 2, 2020, https://mathoverflow.net/questions/356342/convex-julia-sets - [2] T. Bartels, R. McGuire, D. Pavlov, D. Roberts, U. Schreiber, C. Tan, and T. Trimble, Ball, an nLab page, https://ncatlab.org/nlab/show/ball, revised 2019.
- [3] Alexander Barvinok, A course in convexity, Graduate Studies in Mathematics, vol. 54, American Mathematical Society, Providence, RI, 2002. MR 1940576
- [4] Alan F. Beardon, Iteration of rational functions, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, New York, 1991. Complex analytic dynamical systems. MR 1128089
- [5] Glen E. Bredon, Topology and geometry, Graduate Texts in Mathematics, vol. 139, Springer-Verlag, New York, 1997. Corrected third printing of the 1993 original. MR 1700700
- [6] Arnaud Chéritat, Yan Gao, Yafei Ou, and Lei Tan, A refinement of the Gauss-Lucas theorem (after W. P. Thurston), C. R. Math. Acad. Sci. Paris 353 (2015), no. 8, 711–715 (English, with English and French summaries). MR 3367639, https://doi.org/10.1016/j.crma.2015.05.007
- [7] K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284
- [8] David H. Hamilton, Length of Julia curves, Pacific J. Math. 169 (1995), no. 1, 75–93. MR 1346247
- [9] Lars Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0203075
- [10] Lars Hörmander, Notions of convexity, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2007. Reprint of the 1994 edition [of MR1301332]. MR 2311920
- [11] Maciej Klimek, Metrics associated with extremal plurisubharmonic functions, Proc. Amer. Math. Soc. 123 (1995), no. 9, 2763–2770. MR 1307539, https://doi.org/10.1090/S0002-9939-1995-1307539-3
- [12] Stanisław Łojasiewicz, Introduction to complex analytic geometry, Birkhäuser Verlag, Basel, 1991. Translated from the Polish by Maciej Klimek. MR 1131081
- [13] Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, London Mathematical Society Monographs. New Series, vol. 26, The Clarendon Press, Oxford University Press, Oxford, 2002. MR 1954841
- [14] M. Stawiska-Friedland, an answer to [1] on Math Overflow, April 10, 2020.
- [15] Victor Andreevich Toponogov, Differential geometry of curves and surfaces, Birkhäuser Boston, Inc., Boston, MA, 2006. A concise guide; With the editorial assistance of Vladimir Y. Rovenski. MR 2208981
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37F10, 30C15, 52A10
Retrieve articles in all journals with MSC (2010): 37F10, 30C15, 52A10
Additional Information
Małgorzata Stawiska
Affiliation:
Mathematical Reviews, 416 Fourth Street, Ann Arbor, Michigan 48103
Email:
stawiska@umich.edu
DOI:
https://doi.org/10.1090/proc/15224
Received by editor(s):
April 29, 2020
Published electronically:
October 9, 2020
Communicated by:
Filippo Bracci
Article copyright:
© Copyright 2020
American Mathematical Society