The spectral localizer for semifinite spectral triples
Authors:
Hermann Schulz-Baldes and Tom Stoiber
Journal:
Proc. Amer. Math. Soc. 149 (2021), 121-134
MSC (2010):
Primary 19K56, 46L80
DOI:
https://doi.org/10.1090/proc/15230
Published electronically:
October 20, 2020
MathSciNet review:
4172591
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: The notion of a spectral localizer is extended to pairings with semifinite spectral triples. By a spectral flow argument, any semifinite index pairing is shown to be equal to the signature of the spectral localizer. As an application, a formula for the weak invariants of topological insulators is derived. This provides a new approach to their numerical evaluation.
- Moulay-Tahar Benameur, Alan L. Carey, John Phillips, Adam Rennie, Fyodor A. Sukochev, and Krzysztof P. Wojciechowski, An analytic approach to spectral flow in von Neumann algebras, Analysis, geometry and topology of elliptic operators, World Sci. Publ., Hackensack, NJ, 2006, pp. 297–352. MR 2246773
- Chris Bourne and Emil Prodan, Non-commutative Chern numbers for generic aperiodic discrete systems, J. Phys. A 51 (2018), no. 23, 235202, 38. MR 3810727, DOI https://doi.org/10.1088/1751-8121/aac093
- Chris Bourne and Hermann Schulz-Baldes, Application of semifinite index theory to weak topological phases, 2016 MATRIX annals, MATRIX Book Ser., vol. 1, Springer, Cham, 2018, pp. 203–227. MR 3792522
- Manfred Breuer, Fredholm theories in von Neumann algebras. I, Math. Ann. 178 (1968), 243–254. MR 234294, DOI https://doi.org/10.1007/BF01350663
- A. L. Carey, V. Gayral, J. Phillips, A. Rennie, and F. A. Sukochev, Spectral flow for nonunital spectral triples, Canad. J. Math. 67 (2015), no. 4, 759–794. MR 3361012, DOI https://doi.org/10.4153/CJM-2014-042-x
- A. L. Carey, V. Gayral, A. Rennie, and F. A. Sukochev, Index theory for locally compact noncommutative geometries, Mem. Amer. Math. Soc. 231 (2014), no. 1085, vi+130. MR 3221983
- Alan Carey and John Phillips, Unbounded Fredholm modules and spectral flow, Canad. J. Math. 50 (1998), no. 4, 673–718. MR 1638603, DOI https://doi.org/10.4153/CJM-1998-038-x
- Alan L. Carey, John Phillips, Adam Rennie, and Fyodor A. Sukochev, The local index formula in semifinite von Neumann algebras. I. Spectral flow, Adv. Math. 202 (2006), no. 2, 451–516. MR 2222358, DOI https://doi.org/10.1016/j.aim.2005.03.011
- Alan L. Carey, John Phillips, Adam Rennie, and Fyodor A. Sukochev, The local index formula in semifinite von Neumann algebras. II. The even case, Adv. Math. 202 (2006), no. 2, 517–554. MR 2222359, DOI https://doi.org/10.1016/j.aim.2005.03.010
- Alain Connes and Henri Moscovici, Type III and spectral triples, Traces in number theory, geometry and quantum fields, Aspects Math., E38, Friedr. Vieweg, Wiesbaden, 2008, pp. 57–71. MR 2427588
- J. Kaad, R. Nest, and A. Rennie, $KK$-theory and spectral flow in von Neumann algebras, J. K-Theory 10 (2012), no. 2, 241–277. MR 3004169, DOI https://doi.org/10.1017/is012003003jkt185
- Terry A. Loring, $K$-theory and pseudospectra for topological insulators, Ann. Physics 356 (2015), 383–416. MR 3350651, DOI https://doi.org/10.1016/j.aop.2015.02.031
- Terry A. Loring, Bulk spectrum and $K$-theory for infinite-area topological quasicrystals, J. Math. Phys. 60 (2019), no. 8, 081903, 16. MR 3994387, DOI https://doi.org/10.1063/1.5083051
- Terry A. Loring and Hermann Schulz-Baldes, Finite volume calculation of $K$-theory invariants, New York J. Math. 23 (2017), 1111–1140. MR 3711272
- Terry A. Loring and Hermann Schulz-Baldes, The spectral localizer for even index pairings, J. Noncommut. Geom. 14 (2020), no. 1, 1–23. MR 4107509, DOI https://doi.org/10.4171/JNCG/357
- Terry A. Loring and Hermann Schulz-Baldes, Spectral flow argument localizing an odd index pairing, Canad. Math. Bull. 62 (2019), no. 2, 373–381. MR 3952525, DOI https://doi.org/10.4153/cmb-2018-013-x
- Edgar Lozano Viesca, Jonas Schober, and Hermann Schulz-Baldes, Chern numbers as half-signature of the spectral localizer, J. Math. Phys. 60 (2019), no. 7, 072101, 13. MR 3982949, DOI https://doi.org/10.1063/1.5094300
- John Phillips, Spectral flow in type I and II factors—a new approach, Cyclic cohomology and noncommutative geometry (Waterloo, ON, 1995) Fields Inst. Commun., vol. 17, Amer. Math. Soc., Providence, RI, 1997, pp. 137–153. MR 1478707
- John Phillips and Iain Raeburn, An index theorem for Toeplitz operators with noncommutative symbol space, J. Funct. Anal. 120 (1994), no. 2, 239–263. MR 1266310, DOI https://doi.org/10.1006/jfan.1994.1032
- Emil Prodan, A computational non-commutative geometry program for disordered topological insulators, SpringerBriefs in Mathematical Physics, vol. 23, Springer, Cham, 2017. MR 3618067
- Emil Prodan and Hermann Schulz-Baldes, Bulk and boundary invariants for complex topological insulators, Mathematical Physics Studies, Springer, [Cham], 2016. From $K$-theory to physics. MR 3468838
- Emil Prodan and Hermann Schulz-Baldes, Generalized Connes-Chern characters in $KK$-theory with an application to weak invariants of topological insulators, Rev. Math. Phys. 28 (2016), no. 10, 1650024, 76. MR 3572630, DOI https://doi.org/10.1142/S0129055X16500240
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 19K56, 46L80
Retrieve articles in all journals with MSC (2010): 19K56, 46L80
Additional Information
Hermann Schulz-Baldes
Affiliation:
Department Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
MR Author ID:
354449
ORCID:
0000-0003-0304-4140
Tom Stoiber
Affiliation:
Department Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
ORCID:
0000-0002-5018-8430
Received by editor(s):
February 11, 2020
Received by editor(s) in revised form:
May 27, 2020, and June 8, 2020
Published electronically:
October 20, 2020
Communicated by:
Adrian Ioana
Article copyright:
© Copyright 2020
American Mathematical Society