On the best constant in the estimate related to $H^1-BMO$ duality
HTML articles powered by AMS MathViewer
- by Adam Osękowski
- Proc. Amer. Math. Soc. 149 (2021), 333-343
- DOI: https://doi.org/10.1090/proc/15234
- Published electronically: October 20, 2020
- PDF | Request permission
Abstract:
Let $I\subset \mathbb {R}$ be an interval and let $f$, $\varphi$ be arbitrary elements of $H^1(I)$ and $BMO(I)$, respectively, with $\int _I\varphi =0$. The paper contains the proof of the estimate \begin{equation*} \int _I f\varphi \leq \sqrt {2}\|f\|_{H^1(I)}\|\varphi \|_{BMO(I)}, \end{equation*} and it is shown that $\sqrt {2}$ cannot be replaced by a smaller universal constant. The argument rests on the existence of a special function enjoying appropriate size and concavity requirements.References
- Richard Bellman, Dynamic programming, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 2010. Reprint of the 1957 edition; With a new introduction by Stuart Dreyfus. MR 2641641, DOI 10.1515/9781400835386
- Colin Bennett, Ronald A. DeVore, and Robert Sharpley, Weak-$L^{\infty }$ and BMO, Ann. of Math. (2) 113 (1981), no. 3, 601–611. MR 621018, DOI 10.2307/2006999
- Ch’ing Sung Chou, Sur certaines généralisations de l’inégalité de Fefferman, Seminar on probability, XVIII, Lecture Notes in Math., vol. 1059, Springer, Berlin, 1984, pp. 219–222 (French). MR 770963, DOI 10.1007/BFb0100046
- Tahir Choulli, Christophe Stricker, and Leszek Krawczyk, On Fefferman and Burkholder-Davis-Gundy inequalities for $\scr E$-martingales, Probab. Theory Related Fields 113 (1999), no. 4, 571–597. MR 1717531, DOI 10.1007/s004400050218
- Charles Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 587–588. MR 280994, DOI 10.1090/S0002-9904-1971-12763-5
- Adriano M. Garsia, Martingale inequalities: Seminar notes on recent progress, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam, 1973. MR 0448538
- R. K. Getoor and M. J. Sharpe, Conformal martingales, Invent. Math. 16 (1972), 271–308. MR 305473, DOI 10.1007/BF01425714
- Loukas Grafakos, Classical Fourier analysis, 2nd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2008. MR 2445437, DOI 10.1007/978-0-387-09432-8
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI 10.1002/cpa.3160140317
- F. L. Nazarov and S. R. Treĭl′, The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis, Algebra i Analiz 8 (1996), no. 5, 32–162 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 8 (1997), no. 5, 721–824. MR 1428988
- F. Nazarov, S. Treil, and A. Volberg, The Bellman functions and two-weight inequalities for Haar multipliers, J. Amer. Math. Soc. 12 (1999), no. 4, 909–928. MR 1685781, DOI 10.1090/S0894-0347-99-00310-0
- Maurizio Pratelli, Sur certains espaces de martingales localement de carré intégrable, Séminaire de Probabilités, X, Lecture Notes in Math., Vol. 511, Springer, Berlin, 1976, pp. 401–413. (Seconde partie: Théorie des intégrales stochastiques, Univ. Strasbourg, Strasbourg, année universitaire 1974/1975),. MR 0438467
- L. Slavin and V. Vasyunin, Sharp results in the integral-form John-Nirenberg inequality, Trans. Amer. Math. Soc. 363 (2011), no. 8, 4135–4169. MR 2792983, DOI 10.1090/S0002-9947-2011-05112-3
- Leonid Slavin and Vasily Vasyunin, Sharp $L^p$ estimates on BMO, Indiana Univ. Math. J. 61 (2012), no. 3, 1051–1110. MR 3071693, DOI 10.1512/iumj.2012.61.4651
- Leonid Slavin and Alexander Volberg, Bellman function and the $H^1$-$\rm BMO$ duality, Harmonic analysis, partial differential equations, and related topics, Contemp. Math., vol. 428, Amer. Math. Soc., Providence, RI, 2007, pp. 113–126. MR 2322382, DOI 10.1090/conm/428/08216
- Vasily Vasyunin and Alexander Volberg, Sharp constants in the classical weak form of the John-Nirenberg inequality, Proc. Lond. Math. Soc. (3) 108 (2014), no. 6, 1417–1434. MR 3218314, DOI 10.1112/plms/pdt063
Bibliographic Information
- Adam Osękowski
- Affiliation: Department of Mathematics, Informatics and Mechanics, University of Warsaw,, Banacha 2, 02-097 Warsaw, Poland
- ORCID: 0000-0002-8905-2418
- Email: A.Osekowski@mimuw.edu.pl
- Received by editor(s): January 15, 2020
- Received by editor(s) in revised form: June 12, 2020
- Published electronically: October 20, 2020
- Additional Notes: This research was supported by Narodowe Centrum Nauki (Poland), grant no. DEC-2014/ 14/E/ST1/00532.
- Communicated by: Ariel Barton
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 333-343
- MSC (2010): Primary 42A05, 42B35, 49K20
- DOI: https://doi.org/10.1090/proc/15234
- MathSciNet review: 4172609