On the best constant in the estimate related to duality
Author:
Adam Osękowski
Journal:
Proc. Amer. Math. Soc. 149 (2021), 333-343
MSC (2010):
Primary 42A05, 42B35, 49K20
DOI:
https://doi.org/10.1090/proc/15234
Published electronically:
October 20, 2020
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let be an interval and let
,
be arbitrary elements of
and
, respectively, with
. The paper contains the proof of the estimate
![]() |
and it is shown that

- [1] Richard Bellman, Dynamic programming, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 2010. Reprint of the 1957 edition; With a new introduction by Stuart Dreyfus. MR 2641641
- [2] Colin Bennett, Ronald A. DeVore, and Robert Sharpley, Weak-𝐿^{∞} and BMO, Ann. of Math. (2) 113 (1981), no. 3, 601–611. MR 621018, https://doi.org/10.2307/2006999
- [3] Ch’ing Sung Chou, Sur certaines généralisations de l’inégalité de Fefferman, Seminar on probability, XVIII, Lecture Notes in Math., vol. 1059, Springer, Berlin, 1984, pp. 219–222 (French). MR 770963, https://doi.org/10.1007/BFb0100046
- [4] Tahir Choulli, Christophe Stricker, and Leszek Krawczyk, On Fefferman and Burkholder-Davis-Gundy inequalities for ℰ-martingales, Probab. Theory Related Fields 113 (1999), no. 4, 571–597. MR 1717531, https://doi.org/10.1007/s004400050218
- [5] Charles Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 587–588. MR 280994, https://doi.org/10.1090/S0002-9904-1971-12763-5
- [6] Adriano M. Garsia, Martingale inequalities: Seminar notes on recent progress, W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam, 1973. Mathematics Lecture Notes Series. MR 0448538
- [7] R. K. Getoor and M. J. Sharpe, Conformal martingales, Invent. Math. 16 (1972), 271–308. MR 305473, https://doi.org/10.1007/BF01425714
- [8] Loukas Grafakos, Classical Fourier analysis, 2nd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2008. MR 2445437
- [9] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, https://doi.org/10.1002/cpa.3160140317
- [10] F. L. Nazarov and S. R. Treĭl′, The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis, Algebra i Analiz 8 (1996), no. 5, 32–162 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 8 (1997), no. 5, 721–824. MR 1428988
- [11] F. Nazarov, S. Treil, and A. Volberg, The Bellman functions and two-weight inequalities for Haar multipliers, J. Amer. Math. Soc. 12 (1999), no. 4, 909–928. MR 1685781, https://doi.org/10.1090/S0894-0347-99-00310-0
- [12] Maurizio Pratelli, Sur certains espaces de martingales localement de carré intégrable, Séminaire de Probabilités, X (Seconde partie: Théorie des intégrales stochastiques, Univ. Strasbourg, Strasbourg, année universitaire 1974/1975), Springer, Berlin, 1976, pp. 401–413. Lecture Notes in Math., Vol. 511. MR 0438467
- [13] L. Slavin and V. Vasyunin, Sharp results in the integral-form John-Nirenberg inequality, Trans. Amer. Math. Soc. 363 (2011), no. 8, 4135–4169. MR 2792983, https://doi.org/10.1090/S0002-9947-2011-05112-3
- [14] Leonid Slavin and Vasily Vasyunin, Sharp 𝐿^{𝑝} estimates on BMO, Indiana Univ. Math. J. 61 (2012), no. 3, 1051–1110. MR 3071693, https://doi.org/10.1512/iumj.2012.61.4651
- [15] Leonid Slavin and Alexander Volberg, Bellman function and the 𝐻¹-𝐵𝑀𝑂 duality, Harmonic analysis, partial differential equations, and related topics, Contemp. Math., vol. 428, Amer. Math. Soc., Providence, RI, 2007, pp. 113–126. MR 2322382, https://doi.org/10.1090/conm/428/08216
- [16] Vasily Vasyunin and Alexander Volberg, Sharp constants in the classical weak form of the John-Nirenberg inequality, Proc. Lond. Math. Soc. (3) 108 (2014), no. 6, 1417–1434. MR 3218314, https://doi.org/10.1112/plms/pdt063
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 42A05, 42B35, 49K20
Retrieve articles in all journals with MSC (2010): 42A05, 42B35, 49K20
Additional Information
Adam Osękowski
Affiliation:
Department of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
Email:
A.Osekowski@mimuw.edu.pl
DOI:
https://doi.org/10.1090/proc/15234
Keywords:
BMO,
Hardy space,
Bellman function
Received by editor(s):
January 15, 2020
Received by editor(s) in revised form:
June 12, 2020
Published electronically:
October 20, 2020
Additional Notes:
This research was supported by Narodowe Centrum Nauki (Poland), grant no. DEC-2014/ 14/E/ST1/00532.
Communicated by:
Ariel Barton
Article copyright:
© Copyright 2020
American Mathematical Society