Automorphic Galois representations and the inverse Galois problem for certain groups of type
Author:
Adrián Zenteno
Journal:
Proc. Amer. Math. Soc. 149 (2021), 89-95
MSC (2010):
Primary 11F80; Secondary 12F12, 20G40
DOI:
https://doi.org/10.1090/proc/15253
Published electronically:
October 20, 2020
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let be an integer greater than three and
be an odd prime. In this paper we prove that at least one of the following groups:
,
,
, or
is a Galois group of
for infinitely many integers
. This is achieved by making use of a slight modification of a group theory result of Khare, Larsen, and Savin, and previous results of the author on the images of the Galois representations attached to cuspidal automorphic representations of
.
- [1] J. D. Adler, Self-contragredient supercuspidal representations of 𝐺𝐿_{𝑛}, Proc. Amer. Math. Soc. 125 (1997), no. 8, 2471–2479. MR 1376746, https://doi.org/10.1090/S0002-9939-97-03786-6
- [2]
S. Arias-de-Reyna and L. Dieulefait, Automorphy of
in the self-dual case, 1611.06918v2.
- [3] Sara Arias-de-Reyna, Luis Dieulefait, and Gabor Wiese, Compatible systems of symplectic Galois representations and the inverse Galois problem, II: Transvections and huge image, Pacific J. Math. 281 (2016), no. 1, 1–16. MR 3459964, https://doi.org/10.2140/pjm.2016.281.1
- [4] James Arthur, The endoscopic classification of representations, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013. Orthogonal and symplectic groups. MR 3135650
- [5] Thomas Barnet-Lamb, Toby Gee, David Geraghty, and Richard Taylor, Potential automorphy and change of weight, Ann. of Math. (2) 179 (2014), no. 2, 501–609. MR 3152941, https://doi.org/10.4007/annals.2014.179.2.3
- [6] Colin J. Bushnell and Guy Henniart, The essentially tame local Langlands correspondence. I, J. Amer. Math. Soc. 18 (2005), no. 3, 685–710. MR 2138141, https://doi.org/10.1090/S0894-0347-05-00487-X
- [7] Michael Harris and Richard Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001. With an appendix by Vladimir G. Berkovich. MR 1876802
- [8] Guy Henniart, Une preuve simple des conjectures de Langlands pour 𝐺𝐿(𝑛) sur un corps 𝑝-adique, Invent. Math. 139 (2000), no. 2, 439–455 (French, with English summary). MR 1738446, https://doi.org/10.1007/s002220050012
- [9] Roger E. Howe, Tamely ramified supercuspidal representations of 𝐺𝑙_{𝑛}, Pacific J. Math. 73 (1977), no. 2, 437–460. MR 492087
- [10] Chandrashekhar Khare, Michael Larsen, and Gordan Savin, Functoriality and the inverse Galois problem, Compos. Math. 144 (2008), no. 3, 541–564. MR 2422339, https://doi.org/10.1112/S0010437X07003284
- [11] Chandrashekhar Khare, Michael Larsen, and Gordan Savin, Functoriality and the inverse Galois problem. II. Groups of type 𝐵_{𝑛} and 𝐺₂, Ann. Fac. Sci. Toulouse Math. (6) 19 (2010), no. 1, 37–70 (English, with English and French summaries). MR 2597780
- [12] Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239
- [13] Gunter Malle and B. Heinrich Matzat, Inverse Galois theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1999. MR 1711577
- [14] Allen Moy, Local constants and the tame Langlands correspondence, Amer. J. Math. 108 (1986), no. 4, 863–930. MR 853218, https://doi.org/10.2307/2374518
- [15] Stefan Reiter, Galoisrealisierungen klassischer Gruppen, J. Reine Angew. Math. 511 (1999), 193–236 (German). MR 1695795, https://doi.org/10.1515/crll.1999.511.193
- [16] Peter Scholze, The local Langlands correspondence for \roman{𝐺𝐿}_{𝑛} over 𝑝-adic fields, Invent. Math. 192 (2013), no. 3, 663–715. MR 3049932, https://doi.org/10.1007/s00222-012-0420-5
- [17] Sug Woo Shin, Automorphic Plancherel density theorem, Israel J. Math. 192 (2012), no. 1, 83–120. MR 3004076, https://doi.org/10.1007/s11856-012-0018-z
- [18] Adrián Zenteno, On the images of the Galois representations attached to certain RAESDC automorphic representations of 𝐺𝐿_{𝑛}(𝔸_{ℚ}), Math. Res. Lett. 26 (2019), no. 3, 921–947. MR 4028106, https://doi.org/10.4310/MRL.2019.v26.n3.a11
- [19] Adrián Zenteno, Lübeck’s classification of representations of finite simple groups of Lie type and the inverse Galois problem for some orthogonal groups, J. Number Theory 206 (2020), 182–193. MR 4013169, https://doi.org/10.1016/j.jnt.2019.06.010
- [20] David Zywina, The inverse Galois problem for orthogonal groups, 1409.1151v1.
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11F80, 12F12, 20G40
Retrieve articles in all journals with MSC (2010): 11F80, 12F12, 20G40
Additional Information
Adrián Zenteno
Affiliation:
Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Blanco Viel 596, Cerro Barón, Valparaíso, Chile
Email:
adrian.zenteno@pucv.cl
DOI:
https://doi.org/10.1090/proc/15253
Received by editor(s):
November 15, 2019
Received by editor(s) in revised form:
May 18, 2020, and May 31, 2020
Published electronically:
October 20, 2020
Additional Notes:
The author was supported by CONICYT Proyecto FONDECYT Postdoctorado No. 3190474.
Communicated by:
Romyar Sharifi
Article copyright:
© Copyright 2020
American Mathematical Society