Automorphic Galois representations and the inverse Galois problem for certain groups of type $D_{m}$
HTML articles powered by AMS MathViewer
- by Adrián Zenteno
- Proc. Amer. Math. Soc. 149 (2021), 89-95
- DOI: https://doi.org/10.1090/proc/15253
- Published electronically: October 20, 2020
- PDF | Request permission
Abstract:
Let $m$ be an integer greater than three and $\ell$ be an odd prime. In this paper we prove that at least one of the following groups: $\mathrm {P}\Omega ^\pm _{2m}(\mathbb {F}_{\ell ^s})$, $\mathrm {PSO}^\pm _{2m}(\mathbb {F}_{\ell ^s})$, $\mathrm {PO}_{2m}^\pm (\mathbb {F}_{\ell ^s})$, or $\mathrm {PGO}^\pm _{2m}(\mathbb {F}_{\ell ^s})$ is a Galois group of $\mathbb {Q}$ for infinitely many integers $s > 0$. This is achieved by making use of a slight modification of a group theory result of Khare, Larsen, and Savin, and previous results of the author on the images of the Galois representations attached to cuspidal automorphic representations of $\mathrm {GL}_{2m}(\mathbb {A}_\mathbb {Q})$.References
- J. D. Adler, Self-contragredient supercuspidal representations of $\textrm {GL}_n$, Proc. Amer. Math. Soc. 125 (1997), no. 8, 2471–2479. MR 1376746, DOI 10.1090/S0002-9939-97-03786-6
- S. Arias-de-Reyna and L. Dieulefait, Automorphy of $\mathrm {GL}_2 \otimes \mathrm {GL}_n$ in the self-dual case, arXiv:1611.06918v2.
- Sara Arias-de-Reyna, Luis Dieulefait, and Gabor Wiese, Compatible systems of symplectic Galois representations and the inverse Galois problem, II: Transvections and huge image, Pacific J. Math. 281 (2016), no. 1, 1–16. MR 3459964, DOI 10.2140/pjm.2016.281.1
- James Arthur, The endoscopic classification of representations, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013. Orthogonal and symplectic groups. MR 3135650, DOI 10.1090/coll/061
- Thomas Barnet-Lamb, Toby Gee, David Geraghty, and Richard Taylor, Potential automorphy and change of weight, Ann. of Math. (2) 179 (2014), no. 2, 501–609. MR 3152941, DOI 10.4007/annals.2014.179.2.3
- Colin J. Bushnell and Guy Henniart, The essentially tame local Langlands correspondence. I, J. Amer. Math. Soc. 18 (2005), no. 3, 685–710. MR 2138141, DOI 10.1090/S0894-0347-05-00487-X
- Michael Harris and Richard Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001. With an appendix by Vladimir G. Berkovich. MR 1876802
- Guy Henniart, Une preuve simple des conjectures de Langlands pour $\textrm {GL}(n)$ sur un corps $p$-adique, Invent. Math. 139 (2000), no. 2, 439–455 (French, with English summary). MR 1738446, DOI 10.1007/s002220050012
- Roger E. Howe, Tamely ramified supercuspidal representations of $\textrm {Gl}_{n}$, Pacific J. Math. 73 (1977), no. 2, 437–460. MR 492087, DOI 10.2140/pjm.1977.73.437
- Chandrashekhar Khare, Michael Larsen, and Gordan Savin, Functoriality and the inverse Galois problem, Compos. Math. 144 (2008), no. 3, 541–564. MR 2422339, DOI 10.1112/S0010437X07003284
- Chandrashekhar Khare, Michael Larsen, and Gordan Savin, Functoriality and the inverse Galois problem. II. Groups of type $B_n$ and $G_2$, Ann. Fac. Sci. Toulouse Math. (6) 19 (2010), no. 1, 37–70 (English, with English and French summaries). MR 2597780, DOI 10.5802/afst.1235
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239, DOI 10.1515/9781400883974
- Gunter Malle and B. Heinrich Matzat, Inverse Galois theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1999. MR 1711577, DOI 10.1007/978-3-662-12123-8
- Allen Moy, Local constants and the tame Langlands correspondence, Amer. J. Math. 108 (1986), no. 4, 863–930. MR 853218, DOI 10.2307/2374518
- Stefan Reiter, Galoisrealisierungen klassischer Gruppen, J. Reine Angew. Math. 511 (1999), 193–236 (German). MR 1695795, DOI 10.1515/crll.1999.511.193
- Peter Scholze, The local Langlands correspondence for $\mathrm {GL}_n$ over $p$-adic fields, Invent. Math. 192 (2013), no. 3, 663–715. MR 3049932, DOI 10.1007/s00222-012-0420-5
- Sug Woo Shin, Automorphic Plancherel density theorem, Israel J. Math. 192 (2012), no. 1, 83–120. MR 3004076, DOI 10.1007/s11856-012-0018-z
- Adrián Zenteno, On the images of the Galois representations attached to certain RAESDC automorphic representations of $\textrm {GL}_n({\Bbb A}_{\Bbb Q})$, Math. Res. Lett. 26 (2019), no. 3, 921–947. MR 4028106, DOI 10.4310/MRL.2019.v26.n3.a11
- Adrián Zenteno, Lübeck’s classification of representations of finite simple groups of Lie type and the inverse Galois problem for some orthogonal groups, J. Number Theory 206 (2020), 182–193. MR 4013169, DOI 10.1016/j.jnt.2019.06.010
- David Zywina, The inverse Galois problem for orthogonal groups, arXiv:1409.1151v1.
Bibliographic Information
- Adrián Zenteno
- Affiliation: Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Blanco Viel 596, Cerro Barón, Valparaíso, Chile
- Email: adrian.zenteno@pucv.cl
- Received by editor(s): November 15, 2019
- Received by editor(s) in revised form: May 18, 2020, and May 31, 2020
- Published electronically: October 20, 2020
- Additional Notes: The author was supported by CONICYT Proyecto FONDECYT Postdoctorado No. 3190474.
- Communicated by: Romyar Sharifi
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 89-95
- MSC (2010): Primary 11F80; Secondary 12F12, 20G40
- DOI: https://doi.org/10.1090/proc/15253
- MathSciNet review: 4172588