On groups having a $p$-constant character
HTML articles powered by AMS MathViewer
- by Silvio Dolfi, Emanuele Pacifici and Lucía Sanus
- Proc. Amer. Math. Soc. 149 (2021), 107-120
- DOI: https://doi.org/10.1090/proc/15256
- Published electronically: October 20, 2020
- PDF | Request permission
Abstract:
Let $G$ be a finite group, and $p$ a prime number; a character of $G$ is called $p$-constant if it takes a constant value on all the elements of $G$ whose order is divisible by $p$. This is a generalization of the very important concept of characters of $p$-defect zero. In this paper, we characterize the finite $p$-solvable groups having a faithful irreducible character that is $p$-constant and not of $p$-defect zero, and we will show that a non-$p$-solvable group with this property is an almost-simple group.References
- Bertram Huppert, Zweifach transitive, auflösbare Permutationsgruppen, Math. Z. 68 (1957), 126–150 (German). MR 94386, DOI 10.1007/BF01160336
- Bertram Huppert and Norman Blackburn, Finite groups. III, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 243, Springer-Verlag, Berlin-New York, 1982. MR 662826
- I. Martin Isaacs, Character theory of finite groups, Pure and Applied Mathematics, No. 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR 0460423
- Olaf Manz and Thomas R. Wolf, Representations of solvable groups, London Mathematical Society Lecture Note Series, vol. 185, Cambridge University Press, Cambridge, 1993. MR 1261638, DOI 10.1017/CBO9780511525971
- Gabriel Navarro, Character theory and the McKay conjecture, Cambridge Studies in Advanced Mathematics, vol. 175, Cambridge University Press, Cambridge, 2018. MR 3753712, DOI 10.1017/9781108552790
- G. Navarro, Characters and blocks of finite groups, London Mathematical Society Lecture Note Series, vol. 250, Cambridge University Press, Cambridge, 1998. MR 1632299, DOI 10.1017/CBO9780511526015
- Gabriel Navarro and Geoffrey R. Robinson, Irreducible characters taking root of unity values on $p$-singular elements, Proc. Amer. Math. Soc. 140 (2012), no. 11, 3785–3792. MR 2944719, DOI 10.1090/S0002-9939-2012-11242-0
- D. S. Passman, $p$-solvable doubly transitive permutation groups, Pacific J. Math. 26 (1968), 555–577. MR 236252, DOI 10.2140/pjm.1968.26.555
- Marco Antonio Pellegrini, Irreducible $p$-constant characters of finite reflection groups, J. Group Theory 20 (2017), no. 5, 911–923. MR 3692055, DOI 10.1515/jgth-2016-0059
- Marco A. Pellegrini and Alexandre Zalesski, Irreducible characters of finite simple groups constant at the $p$-singular elements, Rend. Semin. Mat. Univ. Padova 136 (2016), 35–50. MR 3593541, DOI 10.4171/RSMUP/136-4
- Michio Suzuki, Group theory. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 247, Springer-Verlag, Berlin-New York, 1982. Translated from the Japanese by the author. MR 648772, DOI 10.1007/978-3-642-61804-8
Bibliographic Information
- Silvio Dolfi
- Affiliation: Dipartimento di Matematica e Informatica U. Dini, Università degli Studi di Firenze, viale Morgagni 67/a, 50134 Firenze, Italy
- MR Author ID: 314262
- ORCID: 0000-0002-0513-4249
- Email: silvio.dolfi@unifi.it
- Emanuele Pacifici
- Affiliation: Dipartimento di Matematica F. Enriques, Università degli Studi di Milano, via Saldini 50, 20133 Milano, Italy
- MR Author ID: 730745
- ORCID: 0000-0001-8159-5584
- Email: emanuele.pacifici@unimi.it
- Lucía Sanus
- Affiliation: Departament de Matemàtiques, Facultat de Matemàtiques, Universitat de València, 46100 Burjassot, València, Spain
- ORCID: 0000-0002-0258-5749
- Email: lucia.sanus@uv.es
- Received by editor(s): May 16, 2020
- Received by editor(s) in revised form: June 5, 2020
- Published electronically: October 20, 2020
- Additional Notes: The first two authors were partially supported by the Italian INdAM-GNSAGA
The research of the third author was partially supported by Ministerio de Ciencia e Innovación PID2019-103854GB-I00 and FEDER funds.
The third author thanks Università degli Studi di Firenze for the financial support. - Communicated by: Martin Liebeck
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 107-120
- MSC (2010): Primary 20C15
- DOI: https://doi.org/10.1090/proc/15256
- MathSciNet review: 4172590
Dedicated: Dedicated to Carlo Casolo