The maximal generalised roundness of finite metric spaces
HTML articles powered by AMS MathViewer
- by Gavin Robertson
- Proc. Amer. Math. Soc. 149 (2021), 407-411
- DOI: https://doi.org/10.1090/proc/15298
- Published electronically: October 20, 2020
- PDF | Request permission
Abstract:
A useful tool for computing the maximal generalised roundness of a finite metric space is a formula of Sánchez. Using well-known properties of the classical Cayley-Menger and Gramian matrices, we provide two simplifications of Sánchez’s formula that in particular do not require the calculation of any matrix inverses. To demonstrate the usefulness of these two new formulas we provide a simpler proof of Murugan’s classification of the subsets of the Hamming cube that have maximal generalised roundness greater than $1$.References
- I. Doust, G. Robertson, A. Stoneham, and A. Weston, Distance matrices of subsets of the Hamming cube, (Preprint).
- Per Enflo, On a problem of Smirnov, Ark. Mat. 8 (1969), 107–109. MR 415576, DOI 10.1007/BF02589550
- Timothy Faver, Katelynn Kochalski, Mathav Kishore Murugan, Heidi Verheggen, Elizabeth Wesson, and Anthony Weston, Roundness properties of ultrametric spaces, Glasg. Math. J. 56 (2014), no. 3, 519–535. MR 3250263, DOI 10.1017/S0017089513000438
- F. R. Gantmacher, ‘The theory of matrices.’ Vol. I, Chelsea, New York, (1959), x + 374 pp.
- Poul Hjorth, Petr Lisonĕk, Steen Markvorsen, and Carsten Thomassen, Finite metric spaces of strictly negative type, Linear Algebra Appl. 270 (1998), 255–273. MR 1484084, DOI 10.1016/S0024-3795(97)00242-5
- Jean-François Lafont and Stratos Prassidis, Roundness properties of groups, Geom. Dedicata 117 (2006), 137–160. MR 2231164, DOI 10.1007/s10711-005-9019-y
- C. J. Lennard, A. M. Tonge, and A. Weston, Generalized roundness and negative type, Michigan Math. J. 44 (1997), no. 1, 37–45. MR 1439667, DOI 10.1307/mmj/1029005619
- Hiroshi Maehara, Euclidean embeddings of finite metric spaces, Discrete Math. 313 (2013), no. 23, 2848–2856. MR 3106458, DOI 10.1016/j.disc.2013.08.029
- Mathav Kishore Murugan, Supremal $p$-negative type of vertex transitive graphs, J. Math. Anal. Appl. 391 (2012), no. 2, 376–381. MR 2903138, DOI 10.1016/j.jmaa.2012.02.042
- Stephen Sánchez, On the supremal $p$-negative type of finite metric spaces, J. Math. Anal. Appl. 389 (2012), no. 1, 98–107. MR 2876484, DOI 10.1016/j.jmaa.2011.11.043
- I. J. Schoenberg, On certain metric spaces arising from Euclidean spaces by a change of metric and their imbedding in Hilbert space, Ann. of Math. (2) 38 (1937), no. 4, 787–793. MR 1503370, DOI 10.2307/1968835
- I. J. Schoenberg, Metric spaces and positive definite functions, Trans. Amer. Math. Soc. 44 (1938), no. 3, 522–536. MR 1501980, DOI 10.1090/S0002-9947-1938-1501980-0
Bibliographic Information
- Gavin Robertson
- Affiliation: School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052, Australia
- ORCID: 0000-0003-4231-4879
- Email: gavin.robertson@unsw.edu.au
- Received by editor(s): April 22, 2020
- Received by editor(s) in revised form: July 19, 2020, and July 21, 2020
- Published electronically: October 20, 2020
- Communicated by: Stephen Dilworth
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 407-411
- MSC (2020): Primary 52C99; Secondary 43A35
- DOI: https://doi.org/10.1090/proc/15298
- MathSciNet review: 4172615